VỀ SỰ BỨC XẠ CỦA VẬT ðEN TUYỆT ðỐI:
CÁC ðỊNH LUẬT VÀ CÔNG THỨC.
Nguyễn Mạnh, Tổ Vật lý - Kỹ thuật, Trường THPT Tôn ðức Thắng, tỉnh Ninh Thuận
Email:
A. DẪN NHẬP
Khoảng cuối thế kỷ XIX, ñầu thế kỷ XX, các nhà Vật lý lại tiếp tục lao vào tìm hiểu
hiện tượng bức xạ (Radiation) của vật.
ðịnh luật Kirchhoff có thể nói mở ñầu cho việc tìm kiếm nói trên. Xét vật ñặt vào một
bình chân không, cách nhiệt và có thành phản xạ lý tưởng. Vật sẽ ñồng thời phát xạ và hấp thụ
(Absorption) bức xạ ñiện từ. Thực nghiệm chứng tỏ rằng, sau một khoảng thời gian, trạng thái
cân bằng ñộng (dynamic equilibrium) ñược thiết lập tương ứng với nhiệt ñộ T của vật với mọi
bước sóng, nghĩa là vật phát xạ mạnh các bức xạ nào thì hấp thụ mạnh các bức xạ ñó.
B. CÁC ðỊNH LUẬT VÀ CÔNG THỨC
I. ðịnh luật Kirchhoff:
Gọi r
λ,T
: năng suất phát xạ ñơn sắc (ñặc trưng cho mức ñộ mang năng lượng nhiều hay
ít, chính bằng lượng năng lượng bức xạ từ một ñơn vị diện tích của vật trong một ñơn vị thời
gian trên một khoảng bước sóng d
λ
).
a
λ,T
: hệ số hấp thụ ñơn sắc (ñặc trưng cho mức ñộ hấp thụ năng lượng của mỗi chùm
bức xạ ñơn sắc (Monochromatic), chính bằng thương số giữa lượng năng lượng chùm ñơn sắc
gởi tới một ñơn vị diện tích vật hấp thụ trong một ñơn vị thời gian và năng lượng vật có khả
năng hấp thụ tương ứng).
Từ nhận xét trên, Kirchhoff (1824-1887) ñã cho mối liên hệ giữa r
λ,T
và a
λ,T
là: Tỉ số giữa năng suất phát xạ ñơn sắc và hệ số hấp thụ ñơn sắc của cùng một
vật ở một nhiệt ñộ nhất ñịnh là một hàm chỉ phụ thuộc vào bước sóng và nhiệt
ñộ, mà không phụ thuộc vào bản chất vật ñó. Tức là:
,
,
,
T
T
T
r
a
λ
λ
λ
ε
=
với ε
λ,T
gọi là hàm phổ biến (W/m
3
)
Vật ñen tuyệt ñối (VðTð) (Absolute black body) là vật có khả năng hấp thụ hoàn toàn
năng lượng của mọi bức xạ có bước sóng bất kỳ tới nó ở mọi nhiệt ñộ. Vậy, với VðTð thì a
λ,T
= 1.
Do ñó:
ε
λ,T
= r
λ,T
(hàm phổ biến chính là năng suất phát xạ ñơn sắc của VðTð)
Khảo sát hàm ε
λ,T
bằng thực nghiệm là xác ñịnh ñược sự phân bố năng lượng bức xạ của
VðTð theo bước sóng λ và nhiệt ñộ T. ðồ thị là ñường ñặc trưng phổ phát xạ có dạng dưới
ñây:
Nhận xét:
- Ứng với mỗi nhiệt ñộ T xác ñịnh, ε
λ,T
của VðTð có một cực ñại ứng với một bước
sóng λ
max
hoàn toàn xác ñịnh.
- Khi T tăng, ε
λ,T
tăng rất nhanh và λ
max
ứng với cực ñại của nó dịch chuyển về miền
sóng ngắn.
- Năng suất phát xạ toàn phần của VðTð :
,
0
T T
R d
λ
ε λ
∞
=
∫
(W/m
2
) ñược biểu thị qua diện
tích giới hạn bởi ñường ñặc trưng phổ phát xạ và trục hoành.
II. ðịnh luật Stefan – Boltzmann:
Stefan (1835-1893) và Boltzmann (1844-1906) cho biết mối liên hệ
giữa R
T
và T:
Năng suất phát xạ toàn phần của VðTð tỉ lệ với lũy thừa bậc bốn
của nhiệt ñộ tuyệt ñối của nó.
R
T
= σ.T
4
(W/m
2
)
với σ = 5,67.10
-8
(W/m
2
K
4
) gọi là hằng số Stefan – Boltzmann.
ðối với vật không ñen, ta có:
R
T
= ξσT
4
(W/m
2
)
ξ < 1 gọi là ñộ ñen của vật, phụ thuộc vào bản chất vật, mặt ngoài và nhiệt ñộ T.
Muốn xác ñịnh nhiệt ñộ thực T của vật không ñen, ta nung VðTð ñến nhiệt ñộ T
r
cho
ñến khi:
4 4
r
T T
σ ξσ
=
Vậy, ta có mối liên hệ giữa nhiệt ñộ thực T và nhiệt ñộ bức xạ T
r
của vật không ñen:
4
r
T
T
ξ
=
III. ðịnh luật Wien (ñịnh luật dịch chuyển):
Wien (1864-1928) chỉ ra qui luật xác ñịnh bước sóng λ
max
theo nhiệt ñộ T.
Bước sóng λ
λλ
λ
max
ứng với cực ñại của hàm ε
εε
ε
λ
λλ
λ,T
của VðTð biến thiên tỉ lệ nghịch
với nhiệt ñộ tuyệt ñối của nó.
axm
b
T
λ
=
(m)
với b = 2,896.10
-3
(m.K) : hằng số Wien.
Ông cũng ñã chỉ ra : ε
λ,T
ñạt cực ñại tỉ lệ với T
5
, tức là:
(ε
λ,T
)
max
= nT
5
với n = 1,31.10
-11
(W/m
3
K
5
): hằng số ñược xác ñịnh từ thực nghiệm.
Vậy, năng suất bức xạ ñơn sắc cực ñại của VðTð tỉ lệ với lũy thừa bậc năm của
nhiệt ñộ tuyệt ñối.
IV. Công thức Rayleigh – Jeans:
Dựa trên quan ñiểm Vật lý cổ ñiển, tức cho rằng các nguyên tử, phân tử
phát xạ và hấp thụ bức xạ ñiện từ một cách liên tục ví như dòng chảy và
sự phân bố (distribution) ñều năng lượng theo bậc tự do, hai nhà vật lý
Rayleigh và Jeans ñã ñịnh ra ñược dạng hàm phổ biến như sau:
2
,
2
2
T
kT
c
ν
πν
ε
=
(theo biến tần số
ν
)
với k = 1,38.10
-23
(J/K) gọi là hằng số Boltzmann.
Biến ñổi theo biến λ, tức chuyển ε
ν,T
dν thành ε
λ,T
dλ
Có
c
ν
λ
=
. Tìm dν thế vào công thức trên và lưu ý giá trị dương của hàm, ta ñược:
,
4
2
T
c
kT
λ
π
ε
λ
=
(theo biến bước sóng
λ
)
Hai công thức mô tả dạng hàm phổ biến trên phù hợp tốt thực nghiệm ở vùng nhiệt ñộ
cao và bước sóng dài. Rất tiếc, ở nhiệt ñộ thấp và bước sóng ngắn, nó không còn
nghiệm ñúng nữa.
Mặt khác, mâu thuẫn lại xảy ra từ công thức dẫn ñến phi thực tế. ðó là:
2
,
2
0 0
2
T T
R d kTd
c
ν
πν
ε ν ν
∞ ∞
= = = ∞
∫ ∫
(!?)
ðiều bế tắc này kéo dài khá lâu trong tiến trình Vật lý học. Sự kiện này ñược gọi là tai
biến ở vùng tử ngoại (Ultra-violet Ray).
V. Công thức Planck:
ðể khắc phục sự khủng hoảng trên, năm 1900, Planck (1858-1947) ñã phủ nhận lý
thuyết cổ ñiển về bức xạ và ñồng thời nêu lên giả thiết hoàn toàn mới thay thế cho nó.
ðó là thuyết lượng tử (Quantum theory) của ông và sau này trở thành một trong
những trụ cột của nền Vật lý hiện ñại. Theo thuyết này, Planck cho rằng năng lượng
bức xạ không thể có các giá trị liên tục, mà gián ñoạn và bao giờ cũng là số nguyên lần
của một năng lượng nguyên tố gọi là một lượng tử. Sau này, Einstein (1879-1955) gọi là
photon.
Mỗi lượng tử có mang năng lượng xác ñịnh:
hc
h
ε ν
λ
= =
(J)
với h = 6,625.10
-34
(Js) gọi là hằng số Planck.
Dựa trên cơ sở lý thuyết ñưa ra, ông ñã phác họa một cách tường minh hàm phổ biến
của VðTð:
3
,
2
2 1
1
T
h
kT
h
c
e
ν
ν
π ν
ε
=
−
(theo biến tần số
ν
)
hoặc:
2
,
5
2 1
1
T
hc
kT
hc
e
λ
λ
π
ε
λ
=
−
(theo biến bước sóng
λ
)
Hai công thức Planck ñã nêu phù hợp rất tốt với thực nghiệm trên mọi miền bước sóng
và nhiệt ñộ. Một bức tranh tổng quát về bức xạ thật tuyệt vời ñến hoang mang! Sự
khủng hoảng ở vùng tử ngoại ñã ñược giải quyết.
C. CÁC HỆ QUẢ CỦA CÔNG THỨC PLANCK
Từ công thức Planck, có thể tìm lại các ñịnh luật và công thức ñã ñề cập trên.
a) Có năng suất phát xạ toàn phần của VðTð:
3
,
2
0 0
2
1
T T
h
kT
h
R d d
c
e
ν
ν
π ν
ε ν ν
∞ ∞
= =
−
∫ ∫
ðặt biến mới
h hd kT
x dx d dx
kT kT h
ν ν
ν
= ⇒ = ⇒ =
xkT
h
ν
⇒ =
. Thay tất cả vào tích phân trên, ta ñược:
4 4 3
2 3
0
2
1
T
x
k T x
R dx
c h e
π
∞
=
−
∫
Do:
3 4
0
1 15
x
x
dx
e
π
∞
=
−
∫
nên:
5 4
4 4
2 3
2
15
T
k
R T T
c h
π
σ
= =
(ðịnh luật Stefan – Boltzmann)
với
5 4
8
2 3
2
5,67.10
15
k
c h
π
σ
−
= =
(W/m
2
K
4
)
b) Có năng suất phát xạ toàn phần của VðTð:
2
,
5
2 1
1
T
hc
kT
hc
e
λ
λ
π
ε
λ
=
−
ðặt
5 5
5
5 5 5
hc hc h c
x
kT xkT x k T
λ λ
λ
= ⇒ = ⇒ =
Thế vào công thức trên, ta ñược:
5 5 5
,
4 3
2
1
T
x
k T x
h c e
λ
π
ε
=
−
Áp dụng ñiều kiện cực trị, ta có:
5 4 5
,
2
5 ( 1)
0 0 0
1 ( 1)
x x
T
x x
d
d x x e x e
d dx e e
λ
ε
λ
− −
= ⇔ = ⇔ =
− −
4 5
5 ( 1) 0 5 5 0
x x x x
x e x e xe e
⇒ − − = ⇔ − + =
Giải phương trình siêu việt này ñược 2 nghiệm: x = 0 (loại) và x = 4,965. Thế vào trên,
ta có:
ax
4,965
m
hc b
kT T
λ
= =
(ðịnh luật Wien)
với
3
2,896.10
4,965
hc
b
k
−
= =
(m.K)
c) Viết lại:
3
,
2
2 1
1
T
h
kT
h
c
e
ν
ν
π ν
ε
=
−
Nhận thấy rằng trong miền bức xạ ñiện từ tần số thấp ở nhiệt ñộ cao, năng lượng photon
rất nhỏ so với kT, tức là:
1
h
h kT
kT
ν
ν
⇒
≪ ≪
Phép tính gần ñúng cho thấy:
1
h
kT
h
e
kT
ν
ν
+≃
Thay vào công thức Planck trên, ta ñược:
3 2
,
2 2
2 1 2
T
h
kT
h
c c
kT
ν
π ν πν
ε
ν
= =
(Công thức Rayleigh – Jeans)
D. TRƯNG DẪN
1. Nhiệt ñộ của dây tóc bóng ñèn luôn biến ñổi vì ñược ñốt nóng bằng dòng ñiện xoay
chiều. Hiệu số giữa nhiệt ñộ cao nhất và thấp nhất là 80 (K). Nhiệt ñộ trung bình là 2300
(K). Hỏi công suất bức xạ của sợi dây tóc biến ñổi bao nhiêu lần?
T
max
– T
min
= 80 (1)
ax min
ax min
2300 4600
2
m
m
T T
T T
+
= ⇒ + =
(2)
Giải hệ phương trình (1), (2) ñược:
T
max
= 2340 (K) và T
min
= 2260 (K)
Theo ñịnh luật Stefan – Boltzmann:
ax
min
4
ax ax
4
min min
4
4
ax ax
min min
.
.
2340
1,15
2260
m
m T m
T
m m
N R S T S
N R S T S
N T
N T
σ
σ
= =
= =
⇒ = =
≃
Vậy: N
max
= 1,15.N
min
2. Một thỏi thép ñúc có nhiệt ñộ 727
0
C. Trong 1 (s), mỗi cm
2
của nó bức xạ một lượng
năng lượng là 4 (J). Xác ñịnh hệ số hấp thụ của thỏi thép ở nhiệt ñộ ñó, nếu coi rằng hệ
số ñó là như nhau ñối với mọi bước sóng.
T = 727 + 273 = 10
3
(K)
4 4
w
w
r r
Nt T St T
St
σ
σ
= = ⇒ =
Lại có:
4
4 4 8 4 12
4
w 4
0,7
5,67.10 .10 .10
r r
T T
T
T StT
ξ
σ
ξ
− −
= ⇒ = = = =
Vậy hệ số hấp thụ là 0,7
3. Tính lượng năng lượng bức xạ trong một ngày ñêm từ ngôi nhà gạch trát vữa, có diện
tích mặt ngoài tổng cộng là 1000 (m
2
), biết nhiệt ñộ của mặt bức xạ là 27
0
C và hệ số hấp
thụ khi ñó bằng 0,8.
T = 27 + 273 = 300 (K)
1 (ngày ñêm) = 24.3600 = 86400 (s)
N = ξσT
4
S
Năng lượng bức xạ trong một ngày ñêm :
W = Nt = ξσT
4
St = 0,8.5,67.10
-8
.81.10
8
.10
3
.86400 = 3,17.10
10
(J)
4. Công suất bức xạ của vật ñen tuyệt ñối tăng lên bao nhiêu lần nếu trong quá trình
nung nóng bước sóng ứng với năng suất phát xạ cực ñại dịch chuyển từ 0,7 (µm) ñến
0,6 (µm) ?
1
1
2
2
ax 1
1 ax
ax 2
2 ax
m
m
m
m
b b
T
T
b b
T
T
λ
λ
λ
λ
= ⇒ =
= ⇒ =
Lại có:
1
1
2
2
4
4
1 1
4
ax
4
4
2 2
4
ax
T
m
T
m
b
N R S T S S
b
N R S T S S
σ σ
λ
σ σ
λ
= = =
= = =
Do ñó:
1
2
4
4
ax
2
1 ax
0,7
1,9
0,6
m
m
N
N
λ
λ
=
≃
Vậy: N
2
= 1,9.N
1
5. Một vật ñen tuyệt ñối ở nhiệt ñộ T
1
= 2900 (K). Do vật bị nguội ñi nên bước sóng ứng
với năng suất phát xạ cực ñại thay ñổi một lượng ∆λ = 9 (µm). Hỏi vật nguội ñến nhiệt
ñộ T
2
bao nhiêu ?
2 1
1
2
2 1
2 1 ax ax
ax
1
ax
2
ax ax
2 1
1 2
1 2 1 2
1 2
2 1 1
3
1
2
6 3
1
1 1
( )
. .
( . )
2,896.10 2900
290
. 2900.9.10 2,896.10
m m
m
m
m m
T T
b
T
b
T
b
T T
b T T
T T bT bT
TT
T T b bT
bT
T
T b
λ λ
λ
λ
λ λ
λ λ
λ
λ
−
− −
< ⇒ >
=
=
⇒ − = −
−
⇔ ∆ = ⇔ ∆ = −
⇔ ∆ + =
⇒ = =
∆ + +
≃
Vậy vật nguội ñến nhiệt ñộ là 290 (K).