Tải bản đầy đủ (.pdf) (82 trang)

(LUẬN văn THẠC sĩ) tổng hợp các hợp chất dị vòng quinazolinones từ phản ứng mở vòng indole của iodine phân tử

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.5 MB, 82 trang )

BỘ GIÁO DỤC
VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------

Nguyễn Bá Dũng

TỔNG HỢP CÁC HỢP CHẤT DỊ VÒNG QUINAZOLINONES
TỪ PHẢN ỨNG MỞ VÒNG INDOLE CỦA IODINE PHÂN TỬ

LUẬN VĂN THẠC SĨ: HĨA HỌC
Chun ngành: Hóa hữu cơ

TP.HCM – Năm 2021

download by :


BỘ GIÁO DỤC
VÀ ĐÀO TẠO

VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------


Nguyễn Bá Dũng

TỔNG HỢP CÁC HỢP CHẤT DỊ VÒNG QUINAZOLINONES
TỪ PHẢN ỨNG MỞ VÒNG INDOLE CỦA IODINE PHÂN TỬ

LUẬN VĂN THẠC SĨ : HĨA HỌC

Chun ngành: Hóa hữu cơ
Mã số: 8440114

NGƯỜI HƯỚNG DẪN KHOA HỌC :
Hướng dẫn 1: PGS. TS. Trương Vũ Thanh

TP.HCM - 2021

download by :


LỜI CAM ĐOAN
Tơi xin cam đoan đây là cơng trình nghiên cứu của tôi dưới sự hướng dẫn và hỗ
trợ từ Thầy PGS.TS. Trương Vũ Thanh. Các nội dung nghiên cứu và số liệu kết quả trong
đề tài này là trung thực và chưa từng được người khác công bố trong bất cứ cơng trình
nào trước đây. Những số liệu trong các bảng biểu, đồ thị phục vụ cho việc phân tích,
nhận xét, đánh giá được chính tác giả tiến hành thực nghiệm và ghi nhận. Nếu phát hiện
có bất kì sự gian lận hay khơng trung thực nào, tơi xin hồn tồn chịu trách nhiệm trước
Hội đồng.
Tp. Hồ Chí Minh, ngày 30 tháng 12 năm 2021
Học viên thực hiện

Nguyễn Bá Dũng


1

download by :


LỜI CẢM ƠN

Trước hết, tôi xin gửi lời cảm ơn chân thành đến thầy PGS. TS. Trương Vũ Thanh,
người thầy vô cùng tận tâm và nhiệt huyết đã định hướng tơi trong suốt q trình học tập
và nghiên cứu tại Viện Khoa học Vật liệu Ứng dụng. Tôi xin cả ơn ban lãnh đạo, phòng
đào tạo Học Viện Khoa học Công nghệ và ban lãnh đạo Viện Khoa học Vật Liệu Ứng
Dụng – Viện Hàn Lâm Khoa Học và Công Nghệ Việt Nam, cùng các anh chị em và các
bạn đã cùng tôi chia sẽ những niềm vui, nổi buồn, những lo lắng trong công việc và học
tập. Tôi xin cảm ơn các thầy, cô, các anh chị em đồng nghiệp, những người luôn cổ vũ và
giúp đỡ tôi trong công việc cũng như động viên tôi về tinh thần để tơi vượt qua nhưng
khó khăn vất vả trong suốt thời gian học tập. Đặc biệt, lời cảm ơn sâu sắc nhất xin được
gửi đến gia đình, anh, chị, em, vợ và hai con. Mọi người không chỉ là nguồn động lực mà
còn là chỗ dựa tinh thần, là nguồn tiếp sức mạnh lớn nhất giúp tôi vượt qua mọi khó khăn
để hồn thành cuốn luận văn này.
Xin trân trọng cảm ơn!

Tp. HCM, tháng 12 năm 2021
Nguyễn Bá Dũng

2

download by :



Danh mục các ký hiệu và chữ viết tắt
STT Ký hiệu

Tên viết tắt

1

NMR

Phổ cộng hưởng từ hạt nhân

2

GC

Sắc ký khí

3

GC-MS

sắc ký khí - khối phổ

4

TLC

Sắc ký bản mỏng

5


ppm

phần triệu

6

J

hằng số ghép

7

Hz

Hertz

8

DMSO

Dimethyl sulfoxide

9

EA

Ethyl Acetate

10


NMO

N-methylmorpholine N-oxide

11

TBHP

tert-Butyl hydroperoxide

Danh mục các bảng, biểu
Trang
Bảng 2.1. Danh sách hóa chất sử dụng ............................................................................. 10
Bảng 2.2. Tỷ lệ theo thể tích của hỗn hợp và dung mơi chuẩn bị cho hiệu chỉnh
đường chuẩn ...................................................................................................................... 15
Bảng 3.1. Tối ưu hóa các điều kiện phản ứng .................................................................. 33

3

download by :


Danh mục các hình vẽ, đồ thị, sơ đồ
Trang
Hình 1.1. Cấu trúc chính của quinazolinone ................................................................................. 7
Hình 1.2. Cấu trúc quinazolinone và một vài thuốc đã được thương mại hóa .............................. 7
Hình 1.3. (A) Định hướng chung để tổng hợp liên kết amit. (B) Định hướng nghiên cứu: tổng
hợp liên kết amit có trong quinazolin-4(3H)-one sử dụng iodine làm xúc tác. .............................. 9
Hình 2.1. Qui trình tổng hơp quinazolinone từ nguồn amin and amoni ..................................... 13

Hình 2.2. Qui trình tổng hơp quinazolinones từ nguồn anilin ................................................... 14
Hình 2.3. Hiệu chỉnh đường chuẩn của quinazolin-4(3H)-one ................................................... 15
Hình 2.4. Hiệu chỉnh đường chuẩn của 3-phenethyl-2-phenylquinazolin-4(3H)-one ................ 16
Hình 3.1. Tổng hợp quinazolinone từ muối amoni ..................................................................... 18
Hình 3.2. Ảnh hưởng của các loại muối cung cấp N .................................................................. 19
Hình 3.3. Ảnh hưởng của thời gian thực hiện phản ứng ............................................................. 20
Hình 3.4. Ảnh hưởng của xúc tác ................................................................................................ 21
Hình 3.5. Ảnh hưởng của bazơ ................................................................................................... 22
Hình 3.6. Ảnh hưởng của loại dung mơi sử dụng ....................................................................... 23
Hình 3.7. Ảnh hưởng của nhiệt độ phản ứng .............................................................................. 24
Hình 3.8. Ảnh hưởng của đương lượng muối amoni .................................................................. 25
Hình 3.9. Ảnh hưởng của đương lượng Iodine ........................................................................... 26
Hình 3.10. Ảnh hưởng của lượng bazơ ....................................................................................... 27
Hình 3.11. Ảnh hưởng của thể tích dung mơi ............................................................................. 28
Hình 3.12. Tổng hợp quinazolin-4(3H)-one từ NH4HCO3 ......................................................... 29
Hình 3.13. Tổng hợp quinazolin-4(3H)-one từ benzamidine ...................................................... 29
Hình 3.14. Tổng hợp quinazolin-4(3H)-one từ amin .................................................................. 31
Hình 3.15. Tổng hợp quinazolin-4(3H)-one từ anilin ................................................................. 32
Hình 3.16. Tổng hợp quinazolin-4(3H)-one từ anilin ................................................................. 34
Sơ đồ 3.1. Sự iodine hóa tại vị trí C-3 của 2-phenylindole .......................................................... 34
Sơ đồ 3.2. Xác định trung gian trong chuyển hóa hình thành quinazolin-4(3H)-one .................. 35
Sơ đồ 3.3. Vai trò của oxi trong phản ứng và phản ứng bắt gốc tự do. ........................................ 36
Sơ đồ 3.4. Cơ chế đề nghị của phản ứng ...................................................................................... 37

4

download by :


MỤC LỤC


Trang

LỜI CAM ĐOAN ................................................................................................................ 1
LỜI CẢM ƠN...................................................................................................................... 2
Danh mục các ký hiệu và chữ viết tắt.................................................................................. 2
Danh mục các bảng ............................................................................................................. 3
Danh mục các hình vẽ, đồ thị, sơ đồ ................................................................................... 4
CHƯƠNG 1. TỔNG QUAN ............................................................................................... 6
1.1. Giới thiệu về nguyên tố iodine ...................................................................................... 6
1.2. Giới thiệu về quinazolinone........................................................................................... 6
1.3. Định hướng nghiên cứu ................................................................................................. 8
CHƯƠNG 2. THỰC NGHIỆM ......................................................................................... 10
2.1. Nguyên vật liệu và dụng cụ: ........................................................................................ 10
2.2. Qui trình tổng hợp quinazolin-4(3H)-one ................................................................... 12
2.3. Hiệu chỉnh đường chuẩn xác định hiệu xuất GC......................................................... 15
2.3.1. Hiệu chỉnh đường chuẩn cho 2-phenylquinazolin-4(3H)-one: ................................. 15
2.3.2. Hiệu chỉnh đường chuẩn cho 3-phenethyl-2-phenylquinazolin-4(3H)-one ............. 16
2.4. Cô lập sản phẩm .......................................................................................................... 17
CHƯƠNG 3. KẾT QUẢ VÀ BÀN LUẬN ....................................................................... 18
3.1. Tổng hợp quinazolinone từ muối amoni, benzamidine and amin: .............................. 18
3.1.1 Tối ưu hóa điều kiện phản ứng: ................................................................................ 18
3.1.2. Tổng hợp các dẫn xuất quinazolin-4(3H)-one sử dụng NH4HCO3 làm tác chất ...... 28
3.1.3. Tổng hợp quinazolin-4(3H)-one sử dụng banzamidine làm tác chất ....................... 29
3.1.4. Tổng hợp quinazolin-4(3H)-one sử dụng amin làm tác chất .................................... 29
3.1.5. Tổng hợp quinazolin-4(3H)-one sử dụng anilin làm tác chất ................................... 32
3.1.5.1. Tối ưu hóa điều kiện phản ứng: ............................................................................ 32
3.1.5.2. Tổng hợp các dẫn xuất quinazolin-4(3H)-one từ anilin ........................................ 33
3.2. Cơ chế phản ứng .......................................................................................................... 34
3.2.1. Thí nghiệm kiểm chứng ............................................................................................ 34

3.2.2. Đề xuất cơ chế phản ứng: ......................................................................................... 36
CHƯƠNG 4: KẾT LUẬN ................................................................................................. 38
TÀI LIỆU THAM KHẢO ................................................................................................. 39
PHỤ LỤC

5

download by :


TỔNG QUAN
1.1. Giới thiệu về nguyên tố iodine
Năm 1811, Barnard Courtois đã phát hiện một chất khí màu tím, mùi khó chịu,
hình thành trong q trình sản xuất diêm từ tro rong biển. Chất khí này kết tinh sẽ tạo ra
các tinh thể ánh kim hình vảy, màu sẫm. Năm 1814, kết quả nghiên cứu của Joseph Louis
Gay-Lussac, đã làm sáng tỏ chất này là một nguyên tố hóa học tương tự như chlorine.
Iodine được đặt tên theo "iodes", có nghĩa là màu tím hoặc tím trong tiếng Hy Lạp1.
Trong tự nhiên, iodine thường tồn tại dưới dạng hợp chất.
Iodine có vai trị rất quan trọng trong nền cơng nghiệp, hoá dược và sinh học ứng
dụng. Ngày nay nguyên tố iodine được sử dụng rộng rãi trong các phản ứng tổng hợp hữu
cơ bởi tính an tồn, thân thiện với môi trường và hiệu quả cao.
Với ưu điểm dễ tan trong nhiều dung môi hữu cơ như: ethanol, acetone,
acetonitrile, chloroform,…Trong các phản ứng có sử dụng xúc tác kim loại chuyển tiếp
như: AlCl3, ZnCl2, RuCl3, TiCl4, thường phải tiến hành ở điều kiện khó khăn để đạt hiệu
suất cao vì chúng rất nhạy với độ ẩm. Ngoài ra, thời gian diễn ra phản ứng khá dài, không
thân thiện với môi trường, một số trường hợp phải sử dụng muối kim loại đắt tiền. Hiện
nay, ngành công nghiệp tổng hợp hữu cơ hiện đại luôn nghiên cứu theo hướng hiệu quả
cao nhưng vẫn tiết kiệm chi phí cũng như thời gian, việc sử dụng iodine là một trong
những phương án tốt để khắc phục những nhược điểm trên. Vai trò của iodine trong tổng
hợp các hợp chất dị vòng khác nhau giúp các nhà nghiên cứu dễ dàng thực hiện các

chuyển hóa để tạo ra sản phẩm mong muốn với độ chọn lọc cao2-4.
1.2. Giới thiệu về quinazolinone
Quinazolinone và các dẫn xuất đã thu hút được sự chú ý đáng kể của các nhà khoa
học trong nghành công nghiệp dược phẩm5. Tùy thuộc vào vị trí của nhóm keto hoặc oxo
trên vịng, quinazolinone có thể chia thành ba cấu trúc chính (Hình 1.1)6. Trong đó,

6

download by :


4(3H)-quinazolinone là phổ biến nhất, tồn tại dưới dạng chất trung gian hoặc sản phẩm tự
nhiên.

Hình 1.1. Cấu trúc chính của quinazolinone
Hơn 200 alkaloids có khung quinazolinone có hoạt tính sinh học được phân lập từ
nhiều nguồn trong tự nhiên như vi sinh vật, thực vật và động vật7. Với mỗi cấu trúc khác
nhau của chúng mang lại nhiều hoạt tính và dược tính khác nhau, như chống sốt rét8,
kháng khuẩn9, chống viêm10, chống co giật11, kháng nấm12, hạ huyết áp13, chống tiểu
đường14, và các hoạt tính chống ung thư15. Bên cạnh đó, quinazolinone cũng là chất ức
chế phosphoryl hóa tế bào16, phối tử cho thụ thể benzodiazepine và GABA trong hệ thần
kinh trung ương17 và một số hoạt động như tác nhân liên kết DNA18. Với những đặc tính
ưu việt này, hợp chất quinazolinone và các dẫn xuất của chúng vẫn tiếp tục thúc đẩy các
nghiên cứu mới về thuốc.

Hình 1.2. Cấu trúc quinazolinone và một vài thuốc đã được thương mại hóa
7

download by :



Trong ngành công nghiệp dược phẩm, rất nhiều loại thuốc có khung quinazolinone
đã được phát triển và thương mại hóa. Ví dụ, TomudexTM là một trong những loại thuốc
chữa ung thư vì chúng ngăn chặn sự phát triển, cũng như phá hủy tế bào ung thư19.
Raltitrexed được sử dụng để điều trị ung thư đại trực tràng20. Diproqualone và
afloqualone tương tự như methaqualone có đặc tính an thần, giảm lo âu, kháng histamin
và giảm đau (Hình 1.2).
1.3. Định hướng nghiên cứu
Liên kết amit, một trong những liên kết có chứa trong hợp chất quinazolin-4(3H)one, đóng vai trị rất quan trọng đối với tất cả các dạng sống và được phát hiện trong các
q trình sinh hóa khác nhau trong tự nhiên21-24. Một trong những chiến lược phổ biến để
tổng hợp liên kết amit là oxi hóa nguồn hiđrocacbon, dầu mỏ sử dụng oxi phân tử25, theo
sau đó là q trình nitơ hóa cắt đứt liên kết C-C để tạo liên kết amit thông qua phản ứng
Schmidt26 hoặc chuyển vị Beckmann27 (Hình 1.3 A). Trong phản ứng Schmidt, việc sử
dụng NH3 gặp một số nhược điểm như độc hại, là chất bay hơi và dễ cháy nổ, hay bị giới
hạn bởi tác nhân cung cấp nitơ như CH3NO2. NH2OH dùng trong phản ứng chuyển vị
Beckmann chỉ định hướng tổng hợp được liên kết amit bậc hai. Bên cạnh đó, liên kết
amit cũng được tổng hợp trực tiếp bằng cách sử dụng xúc tác Fe28, Cu29 hay ánh sáng30.
Tuy nhiên, lĩnh vực vẫn ở mức độ hạn chế, hoạt hóa liên kết C-H và oxi phân tử trong
pha khí trong điều kiện không sử dụng xúc tác kim loại chuyển tiếp.
Để giải quyết những vấn đề nêu trên, chúng tôi thiết kế mơ phỏng phản ứng dựa
trên q trình cắt đứt chọn lọc liên tiếp có thứ tự liên kết C-H và C-C dùng kim loại
chuyển tiếp, nhưng sử dụng phân tử iodine làm xúc tác. Trái ngược với các kim loại
nặng, iodine là một nguyên tố thân thiện với môi trường và tương đối rẻ tiền. Mặt khác,
iodine có thể tạo ra các dẫn xuất vô cơ và hữu cơ ở các trạng thái oxi hóa khác nhau (-1,
0, +1, +3, +5, +7), các đặc điểm cấu trúc cũng như kiểu phản ứng của hợp chất iodine về
nhiều mặt tương tự như các dẫn xuất của kim loại chuyển tiếp nặng. Hợp chất của iodine
cũng đã được tìm thấy trong một số ứng dụng công nghiệp.

8


download by :


Một trong những hợp chất được chúng tôi lưu tâm đến nữa là indole và các dẫn
xuất của chúng, liên kết C3-H trong phân tử khá dễ được thay thế bởi những nhóm chức
và những phân tử khác, nhưng thật đáng ngạc nhiên, khi sử dụng iodine làm xúc tác,
ngoài tính chất đã được biết đến vừa được đề cập trên, một chuỗi giai đoạn khác xảy ra
sau đó một cách có chọn lọc như cắt đứt liên đơi C2=C3 mở vịng, sau đó là q trình tạo
liên kết kết đóng vịng với các phân tử khác (Hình 1.3 B). Các hợp chất mục tiêu
quinazolin-4(3H)-one thu được khi chúng tôi sử dụng thêm một nguồn cung cấp nitơ bên
ngoài như amin hay muối amoni. Chúng tôi đã phát triển một phương pháp “xanh” mới
để tổng hợp liên kết amit C2-N-C3=O trong quinazolin-4(3H)-one từ việc phân cắt liên
kết C=C của hợp chất indole trong điều kiện em dịu không sử dụng xúc tác kim loại
chuyển tiếp.

Hình 1.3. (A) Định hướng chung để tổng hợp liên kết amit. (B) Định hướng nghiên cứu:
tổng hợp liên kết amit có trong quinazolin-4(3H)-one sử dụng iodine làm xúc tác.

9

download by :


THỰC NGHIỆM
2.1.

Nguyên vật liệu và dụng cụ:

Hóa chất sử dụng đã được thương mại hóa mà khơng cần tinh chế thêm, cung cấp
bởi Sigma Aldrich, Acros and Merck.

Sắc ký bản mỏng (TLC) được cung cấp bởi Merck.
Bảng 2.1. Danh sách hóa chất sử dụng
Hóa chất

Nhà cung cấp

2-phenylindole

Sigma Aldrich

Potassium carbonate

Acros

Amoni hiđrogencacbonat

Sigma Aldrich

2-phenylethylamin

Sigma Aldrich

Anilin

Sigma Aldrich

Ethyl acetate

China


H2O2 solution in water

Acros

N-iodosuccinimide

Acros

Potassium phosphate

Acros

Iodine molecular

Sigma Aldrich

N-methyl-2-pyrrolidone

Acros

4-methylmorpholine N-oxide

Acros

tert-butyl hydroperoxide

Acros

Acetonitrile


Acros

Dimethyl sulfoxide

Acros

Ethanol amin

Sigma Aldrich

Benzyl amin

Acros

10

download by :


Butyl amin

Sigma Aldrich

2-methoxibenzyl amin

Sigma Aldrich

3-methoxibenzyl amin

Sigma Aldrich


4-methoxibenzyl amin

Sigma Aldrich

2-methyl indole

Acros

2-methylbenzyl amin

Sigma Aldrich

3-methylbenzyl amin

Sigma Aldrich

3-trifluoromethylbenzyl amin

Sigma Aldrich

4-bromoanilin

Sigma Aldrich

4-iodoanilin

Sigma Aldrich

4-clorobenzyl amin


Sigma Aldrich

2-clorobenzyl amin

Sigma Aldrich

3-phenylpropylamin

Sigma Aldrich

Diethyl ether

Viet Nam

Hexane

China

Ethanol

China

Sắc ký khí (GC) của hãng Shimadzu GC 2010-Plus được trang bị đầu dò FID và
cột SPB-5 (chiều dài 30m, đường kính trong 0.25mm, độ dày màng 0.25µm). Để phân
tích quinazolin-4(3H)-one, chương trình nhiệt độ sử dụng làm nóng mẫu ban đầu là
100°C, giữ trong 1 phút, sau đó tăng từ 100°C đến 280°C với tốc độ 40°C/phút và giữ
trong 4,5 phút. Để xác định 3-(2-phenylethyl)-quinazolin-4(3H)-one, chương trình nhiệt
độ để phân tích với nhiệt độ ban đầu ở 160°C và được giữ trong 1 phút, sau đó tăng từ
160°C đến 280°C với tốc độ tăng 40°C /phút và giữ trong 8 phút. Diphenyl ether được sử

dụng như chất nội chuẩn để tính tốn sự chuyển hóa của phản ứng và các sản phẩm được
chỉ ra bằng sắc ký khí - khối phổ (GC-MS), dữ liệu phân tích được ghi lại trên Shimadzu
GCMS-QP2010 Ultra.

11

download by :


Phổ 1H và

13

C NMR được phân tích trên máy Bruker AV 500MHz hoạt động ở

500MHz cho 1H và 125MHz cho 13C. Độ dịch chuyển hóa học (δ) được biểu thị bằng giá
trị tính bằng phần triệu (ppm) và hằng số ghép (J) được tính bằng hertz (Hz). Các hệ phổ
được mô tả như sau: s (singlelet), d (doublet), t (triplet), q (quartet) và m (multiplet).
2.2.

Qui trình tổng hợp quinazolin-4(3H)-one

Thêm 2-phenylindole (28.8mg, 0.15mmol), K2CO3 (41.4mg, 0.3mmol) và
phenylethylamin (17.8mg, 0.225mmol) vào vial phản ứng 8mL. Hỗn hợp được thêm
ethyl acetate (2mL) vào trước khi thêm I2 (45.7mg, 0.18mmol). Hỗn hợp cuối cùng được
khuấy từ ở 80oC trong 4 giờ trong môi trường oxi (Hình 2.1). Khi phản ứng kết thúc, hỗn
hợp phản ứng được làm nguội đến nhiệt độ phòng trước khi được thêm diphenyl ether
(27µL; 0.15mmol) làm chất nội chuẩn để tính hiệu suất GC. Sau đó, thêm 1.5-2mL
DMSO vào hỗn hợp để đảm bảo rằng tất cả các thành phần hữu cơ được hịa tan hồn
tồn, sau đó các hợp chất hữu cơ được tách chiết trong hệ dung môi ethyl acetate/nước

với tỷ lệ 3/1. Pha nước được loại bỏ, pha hữu cơ được làm khan bằng Na2SO4 khan trước
khi phân tích bằng GC – MS, để xác định các hợp chất có chứa trong đó và phân tích GC
với diphenyl ether như chất chuẩn để tính hiệu suất GC. Pha hữu cơ được loại bỏ dung
môi ở áp suất thấp bằng phương pháp cô quay, các hợp chất hữu cơ được cô lập tinh khiết
bằng sắc ký cột hoặc kết tinh lại trong methanol để thu được sản phẩm mong muốn. Cuối
cùng, quinazolin-4(3H)-one được xác định cấu trúc bằng phương pháp 1H NMR và 13C
NMR.
Đối với các nguồn aryl amin, quy trình vẫn được giữ nguyên như đối với amin và
muối amoni nhưng sau khi thêm iodine (45.7mg, 0.18mmol) vào hỗn hợp, H2O2 (65μL,
0.6mmol) sẽ được thêm vào sau đó (Hình 2.2). Sự hiện diện của H2O2 rất quan trọng đối
với q trình phản ứng vì khơng có sản phẩm nào được phát hiện nếu khơng thêm chất
oxi hóa này.
Các kết quả phân tích được chỉ ra ở phần phụ lục.

12

download by :


2-phenylindole 28.9mg
K2CO3 2 equiv.
phenylethylamine 1.5 equiv.
iodine 1.2 equiv.

Khuấy từ

 Môi trường oxy
 80oC
 4h


Tách chiết

 Thêm 1 mL DMSO
 EtOAc và nước
 Làm khan với Na2SO4

Pha hữu cơ

 GC
 GC-MS

Cô quay

Cô lập bằng sắc ký cột
hoặc kết tinh

Sản phẩm



1

H NMR và 13C NMR

Hình 2.1. Qui trình tổng hơp quinazolinone từ nguồn amin and amoni

13

download by :



2-phenylindole 28.9mg
K2CO3 2 equiv.
phenylethylamine 1.5 equiv.
iodine 1.2 equiv.
H2O2 4 equiv.

Khuấy từ

 Môi trường oxy
 80oC
 4h

Tách chiết

 Thêm 1 mL DMSO
 EtOAc và nước
 Làm khan với Na2SO4

Pha hữu cơ

 GC
 GC-MS

Cô quay

Cô lập bằng sắc ký cột
hoặc kết tinh

Sản phẩm




1

H NMR và 13C NMR

Hình 2.2. Qui trình tổng hơp quinazolinones từ nguồn anilin

14

download by :


2.3. Hiệu chỉnh đường chuẩn xác định hiệu xuất GC
2.3.1. Hiệu chỉnh đường chuẩn cho 2-phenylquinazolin-4(3H)-one:
Hiệu suất GC được tính toán dựa trên đường chuẩn, được chuẩn bị theo quy trình
sau: trước tiên, hai bình định mức 10mL A và B được chuẩn bị chứa (0.1715mmol) 2phenylquinazolin-4(3H)-one và (4 x 0.1715mmol) dipheyl ether làm chất nội chuẩn
tương ứng. Thể tích dung dịch bên trong bình được điều chỉnh đến 10ml bằng ethyl
acetate. Sau đó, năm bình có đánh dấu từ 1 đến 5 được dùng để chứa hỗn hợp A và B với
tỷ lệ riêng 1:1; 1:2; 1:4; 1:10, và 1:100 được trình bày trong Bảng 2.2.
Bảng 2.2. Tỷ lệ theo thể tích của hỗn hợp và dung mơi chuẩn bị cho hiệu
chỉnh đường chuẩn
Bình

Thể tích của A

Thể tích của B

Thể tích của ethyl acetate


1

4 mL

1 mL

Thêm thể tích đến 10 mL

2

2 mL

1 mL

Thêm thể tích đến 10 mL

3

1 mL

1 mL

Thêm thể tích đến 10 mL

4

0.4 mL

1 mL


Thêm thể tích đến 10 mL

5

40 μL

1 mL

Thêm thể tích đến 10 mL

Phân tích GC các bình vừa được chuẩn bị. Thơng qua kết quả GC, tỷ lệ diện tích
peak tín hiệu đã được xác định và ghi lại. Bằng cách sử dụng những dữ liệu này, đường
chuẩn có thể được thiết lập và xác định như Hình 2.3:
1

y = 1.1452x + 0.0189
R² = 0.9989

nPr/nIs

0.8
0.6
0.4
0.2
0

0

0.2


0.4

SPr/SIs 0.6

0.8

1

Hình 2.3. Hiệu chỉnh đường chuẩn của quinazolin-4(3H)-one

15

download by :


Dựa trên đường chuẩn này, cơng thức tính hiệu suất GC:
Hiệu suất GC (%) =

nPr × 100%
SPr
100%
= (
× 1.1452 + 0.0189) × nIS ×
ntác chất
SIS
ntác chất

Trong đó:
nPr (mmol): số mol của 2-phenylquinazolin-4(3H)one

ntác chất (mmol): số mol của 2-phenylindole
nIS (mmol): số mol của diphenyl ether
SPr: diện tích peak của 2-phenylquinazolin-4(3H)one
SIS: diện tích peak của diphenyl ether
2.3.2. Hiệu chỉnh đường chuẩn cho 3-phenethyl-2-phenylquinazolin-4(3H)-one
Đường chuẩn cho chất nền amin được thiết lập bằng cách áp dụng quy trình tương
tự. Đường chuẩn của sản phẩm 3-phenethyl-2-phenylquinazolin-4(3H)-one được thể hiện

nPr/nIs

trong Hình 2.4:
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0

y = 0.4739x + 0.0202
R² = 0.9994

0

0.5

1


1.5

2

2.5

3

SPr/SIs
Hình 2.4. Hiệu chỉnh đường chuẩn của 3-phenethyl-2-phenylquinazolin-4(3H)-one
Từ đây, việc tính tốn hiệu suất GC có thể được xác định theo công thức sau:

16

download by :


Hiệu suất GC (%) =

nPr × 100%
SPr
100%
= (
× 1.1452 + 0.0189) × nIS ×
(2.2)
ntác chất
SIS
ntác chất

Trong đó:

nPr (mmol): số mol của 3-phenethyl-2-phenylquinazolin-4(3H)-one
ntác chất (mmol): số mol của 2-phenylindole
nIS (mmol): số mol của diphenyl ether
SPr: diện tích peak của 3-phenethyl-2-phenylquinazolin-4(3H)-one
SIS: diện tích peak của diphenyl ether
2.4.

Cơ lập sản phẩm
Khi phản ứng kết thúc, nước được thêm vào hỗn hợp phản ứng. I2 được loại bỏ

bằng cách thêm dung dịch NaS2O3 20%. Pha hữu cơ được làm khan bằng Na2SO4, sau đó
cơ quay áp suất thấp đuổi dung môi. 2-phenylquinazolin-4(3H)-one được cô lập bằng
phương pháp sắc kí cột với hệ dung mơi hexan : ethyl acetate (7: 3). Hiệu suất cô lập của
sản phẩm được tính theo cơng thức sau:
𝐻𝑖ệ𝑢 𝑠𝑢ấ𝑡 𝑐ơ 𝑙ậ𝑝 (%) =

𝑚𝑃𝑟
× 100%
𝑚′𝑃𝑟

Trong đó:
𝑚𝑃𝑟 : khối lượng của 2-phenylquinazolin-4(3H)-one thu được sau khi cô lập.
𝑚′𝑃𝑟 : khối lượng của 2-phenylquinazolin-4(3H)-one khi hiệu suất cô lập là 100%.
Mặt khác, 2-phenylquinazolin-4(3H)-one có thể thu được bằng cách kết tinh trong
etanol và sau đó được rửa bằng etanol lạnh, acetone, hexane và cuối cùng bằng dietyl
ether.

17

download by :



KẾT QUẢ VÀ BÀN LUẬN
3.1.

Tổng hợp quinazolinone từ muối amoni, benzamidine and amin:

Phản ứng dễ dàng xảy ra khi dùng muối amoni làm nguồn cung cấp N, để tạo các
sản phẩm mong muốn. Do vậy, 2-phenylindole và amoni hiđrogencacbonat được chọn sử
dụng làm tác chất cho việc tối ưu hóa điều kiện phản ứng (Hình 3.1). Việc mở rộng trên
các dẫn xuất của chúng sẽ được nghiên cứu và thực hiện, sau khi có được điều kiện phản
ứng tối ưu.

Hình 3.1. Tổng hợp quinazolinone từ muối amoni
3.1.1

Tối ưu hóa điều kiện phản ứng:
Bazơ, chất xúc tác và dung môi được sử dụng với đa dạng về loại cũng như số

lượng khác nhau để thiết lập điều kiện tối ưu. Quy trình để tối ưu hóa được trình bày ở
các mục bên dưới.
3.1.1.1. Ảnh hưởng của các loại muối amoni
Việc sử dụng các nguồn cung cấp N khác nhau đã được khảo sát kĩ lưỡng, đây là
một trong những yếu tố quan trọng, tác chất trực tiếp tham gia vào phản ứng (Hình 3.2).
Urea khơng thu được sản phẩm như mong muốn, trong khi đó, với các loại muối amoni
cho kết quả tốt hơn. Với hiệu suất tối ưu đạt 42%, NH4HCO3 đã được chọn làm tác chất
để tối ưu điều kiện phản ứng trong các yếu tố tiếp theo. Một số loại muối amoni tương tự
như NH4OAc có đặc tính dễ hút ẩm, chảy lỏng ở nhiệu độ thường, hay dung dịch NH3 dễ
bay hơi, cho hiệu suất phản ứng thấp hơn, lần lượt là 40% và 36%. Các muối amoni có
tính bazơ hơn, sẽ cho hiệu suất tốt hơn so với các muối có tinh axit.


18

download by :


100

Hiệu suất (%)

80
60
42

40

40

36
21

20
0

0
Urea

NH4HCO3

NH4OAc


NH4Cl

NH3

Ammonium
Hình 3.2. Ảnh hưởng của các loại muối cung cấp N
3.1.1.2. Ảnh hưởng của thời gian phản ứng
Phản ứng đạt hiệu suất tối đa sau 4h phản ứng, và không tăng thêm khi kéo dài
thời gian phản ứng (Hình 3.3).

19

download by :


Hiệu suất (%)

100
80
60

46

45

46

42


12 h

24 h

34

40
20

46

13

0
1h

2h

4h

5h
8h
Thời gian

Hình 3.3. Ảnh hưởng của thời gian thực hiện phản ứng
3.1.1.3. Ảnh hưởng của xúc tác
Phản ứng đạt hiệu suất cao khi xử dụng I2 làm xúc tác, thấp hơn là NIS, tương ứng
với 46% và 24%. Phản ứng có sự chọc lọc, sản phẩm chỉ thu được trong trường hợp sử
dụng xúc tác có khả năng tạo gốc tự do, với các dạng muối I- như NH4I, KI, hay dạng oxi
hóa cao như trong hợp chất I2O5, đều khơng có sự ghi nhận tạo thành sản phẩm phản ứng

(Hình 3.4).

20

download by :


Hiệu suất (%)

100
80
60

46

40
24
20
0
NIS

I2

0

0

0

NH4I

[I]

I205

KI

Hình 3.4. Ảnh hưởng của xúc tác
3.1.1.4. Ảnh hưởng của bazơ
Các bazơ khác nhau đã được sử dụng để kiểm tra sự ảnh hưởng của chúng đến
phản ứng (Hình 3.5). Một chuỗi bao gồm các bazơ vơ cơ mạnh đến yếu và một số bazơ
hữu cơ. Bazơ vô cơ cho hiệu suất cao hơn so với phần còn lại ngoại trừ Li2CO3 và KOH,
phản ứng không thu được sản phẩm. Trong số này, K2CO3 và NaHCO3 cho hiệu suất cao
hơn, với hiệu suất tương ứng 46% và 33%. Bazơ hữu cơ cho sản phẩm với hiệu suất
trung bình là CH3COOK và tBuOK trong khi tBuONa và NaHSO3 không thu được sản
phẩm mong muốn. Dựa trên dữ liệu này, K2CO3 được chọn làm bazơ tối ưu.

21

download by :


Hiệu suất (%)

100
90
80
70
60
50
40

30
20
10
0

46
24

29

33

31
0

0

28

25
0

0

Base
Hình 3.5. Ảnh hưởng của bazơ
3.1.1.5. Ảnh hưởng của loại dung môi
Hầu hết các loại dung môi đều có khả năng tạo thành sản phẩm mong muốn, ngoại
trừ nitromethane và ethylene glycol. Hiệu suất của phản ứng được cải thiện tốt nhất với
trường hợp sử dụng dung môi ethyl acetate, 60%. Ethyl acetate là một loại dung môi

thông dụng, dễ kiếm và ít độc hại hơn so với các dung mơi khác. Do đó, việc sử dụng
dung mơi xanh này làm cho quy trình trở nên thiết thực và thân thiện với mơi trường hơn
(Hình 3.6).

22

download by :


Hiệu suất (%)

100
90
80
70
60
50
40
30
20
10
0

60
42

42

43


40

48

39

0

46

0

Dung mơi
Hình 3.6. Ảnh hưởng của loại dung môi sử dụng
3.1.1.6. Ảnh hưởng của nhiệt độ lên phản ứng:
Để hạn chế về tính phức tạp, phản ứng đã được khảo sát từ nhiệt độ phòng, 60oC,
80oC và 120oC sử dụng dung môi ethyl acetate. Phản ứng xảy ra ở tất cả các nhiệt độ
khảo sát, nhưng đạt cực đại 60% tại 80oC. Hiệu suất tăng đáng kể khi tăng nhiệt độ phản
ứng và giảm dần ở trên 80oC (Hình 3.7).

23

download by :


×