Tải bản đầy đủ (.pdf) (41 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (964.64 KB, 41 trang )

❇❐ ●■⑩❖ ❉Ö❈ ❱⑨ ✣⑨❖ ❚❸❖
✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❑❍❖❆ ❚❖⑩◆

✯✯✯✯✯✯✯✯✯

❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P
Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆
❈❍❖ Pì PP

ữợ ❚❘❯◆●

✣➔ ◆➤♥❣✱ ✵✺✴✷✵✶✺




▼ö❝ ❧ö❝
▼Ð ✣❺❯
✶ ▼❐❚ ❙➮ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚
✶✳✶




❑❍⑩■ ◆■➏▼ ❱➋ ❙➮ ●❺◆ ✣Ó◆● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳




✶✳✶✳✶

❙❛✐ sè t✉②➺t ✤è✐✱ s❛✐ sè t÷ì♥❣ ✤è✐

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳



✶✳✶✳✷

❙❛✐ sè t❤✉ ❣å♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳



✶✳✷

❙❆■ ❙➮ ❚➑◆❍ ❚❖⑩◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳



✶✳✸

◆●❍■➏▼ ❱⑨ ❑❍❖❷◆● P❍❹◆ ▲■ ◆●❍■➏▼

✳ ✳ ✳ ✳ ✳ ✳



✶✳✸✳✶


◆❣❤✐➺♠ t❤ü❝ ❝õ❛ ữỡ tr ởt







ị ❤➻♥❤ ❤å❝ ❝õ❛ ♥❣❤✐➺♠

✳ ✳ ✳ ✳ ✳ ✳ ✳





ỹ tỗ t tỹ ừ ữỡ tr➻♥❤ ♠ët ➞♥

✶✵

✶✳✸✳✹

❑❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✷

✷ P❍×❒◆● P❍⑩P ❉❹❨ ❈❯◆● ❚➐▼ ◆●❍■➏▼ ●❺◆
✣Ĩ◆● ❈Õ❆ P❍×❒◆● ❚❘➐◆❍
✶✺
✷✳✶


✷✳✷

✷✳✸

●■❰■ ❚❍■➏❯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✺

✷✳✶✳✶

✣➦t ✈➜♥ ✤➲

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✺

✷✳✶✳✷

❈→❝❤ ❣✐↔✐ q✉②➳t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✻

P❍×❒◆● P❍⑩P ❉❹❨ ❈❯◆●

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✽

✷✳✷✳✶


▼ỉ t↔ ♣❤÷ì♥❣ ♣❤→♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✽

✷✳✷✳✷

❙ü ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ✈➔ ✤→♥❤ ❣✐→ s❛✐ sè

✷✸

✳ ✳

▼❐❚ ❙➮ ❇⑨■ ❚❖⑩◆ ❚➐▼ ◆●❍■➏▼ ●❺◆ ✣Ĩ◆● ❱❰■
P❍×❒◆● P❍⑩P ❉❹❨ ❈❯◆● ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✼

✸ Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆●
P❍⑩P ❉❹❨ ❈❯◆●
✷✾
✸✳✶

▼❐❚ ❱⑨■ ◆➆❚ ❱➋ P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ✳ ✳
✸✳✶✳✶

●✐ỵ✐ t❤✐➺✉

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P


✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✾
✷✾

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




✸✳✷

✸✳✶✳✷

●✐❛♦ ❞✐➺♥ t÷ì♥❣ t→❝ ❝õ❛ ▼❛t❤❡♠❛t✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✵

✸✳✶✳✸

❈→❝ t➼♥❤ ♥➠♥❣ ❝õ❛ ▼❛t❤❡♠❛t✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✶

✸✳✶✳✹

▼ët sè ❤➔♠ t❤æ♥❣ ❞ö♥❣

✸✷


✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆●
P❍⑩P ❉❹❨ ❈❯◆●

❑➌❚ ▲❯❾◆
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✸

✹✵
✹✶

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




é
ỵ ỹ ồ t
t t❤ü❝ t➳ ✭tr♦♥❣ ❦❤♦❛ ❤å❝ ❦ÿ t❤✉➟t✱ tr♦♥❣ t❤✐➯♥ ✈➠♥✱ ✤♦ ✤↕❝
r✉ë♥❣ ✤➜t✱ ✳✳✳✮ ❞➝♥ ✤➳♥ ✈✐➺❝ ❝➛♥ ♣❤↔✐ ❣✐↔✐ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥✱ t✉②
♥❤✐➯♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ♥➔② t❤÷í♥❣ ♣❤ù❝ t↕♣✱ ❞♦ ✤â ♥â✐ ❝❤✉♥❣ ❦❤â ❝â t❤➸
❣✐↔✐ ✤÷đ❝ ✭✤÷❛ ✤÷đ❝ ✈➲ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ❝ì ❜↔♥✮ ❜➡♥❣ ❝→❝ ❜✐➳♥ ✤ê✐ ✤↕✐
sè t❤➟♠ ❝❤➼ tr♦♥❣ ♠ët sè tr÷í♥❣ ❤đ♣ ❝ơ♥❣ ❦❤ỉ♥❣ t❤➸ t➻♠ ✤÷đ❝ ♥❣❤✐➺♠
t÷í♥❣ ♠✐♥❤✳ ❍ì♥ ♥ú❛✱ ổ tự tữớ ự t ỗ

❝❤♦ ❞ị ❝â ❝ỉ♥❣ t❤ù❝ ♥❣❤✐➺♠✱ ✈✐➺❝ ❦❤↔♦ s→t ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛
♥â ❝ô♥❣ ❣➦♣ ♣❤↔✐ r➜t ♥❤✐➲✉ ❦❤â ❦❤➠♥✳ ❱➻ ✈➟②✱ ♥❣❛② tø t❤í✐ ❆r❝❤✐♠❡❞❡s✱
❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣➛♥ ✤ó♥❣ ✤➣ ✤÷đ❝ ①➙② ❞ü♥❣✳ ◆❤✐➲✉ ♣❤÷ì♥❣ ♣❤→♣ ✤➣
trð t❤➔♥❤ ❦✐♥❤ ✤✐➸♥ ✈➔ ✤÷đ❝ sû ❞ư♥❣ rë♥❣ r➣✐ tr♦♥❣ t❤ü❝ t➳✳ ❇ð✐ ✈➟②✱ ✈✐➺❝
♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣➛♥ ✤ó♥❣ ✤➸ t➻♠ ♥❣❤✐➺♠ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤
♥➔② trð ♥➯♥ ❝➜♣ t❤✐➳t ✈➔ tü ♥❤✐➯♥✳
❈ị♥❣ ✈ỵ✐ sü ♣❤→t tr✐➸♥ ❝õ❛ t✐♥ ❤å❝✱ ❝→❝ ữỡ ú
õ ỵ tỹ t➳ ❤ì♥✳ ✣➸ ❣✐↔✐ ♠ët ♣❤÷ì♥❣ tr➻♥❤ ❜➡♥❣ t❛② tr➯♥
❣✐➜②✱ ❝â ❦❤✐ ♣❤↔✐ ♠➜t ❤➔♥❣ ♥❣➔② ✈ỵ✐ ♥❤ú♥❣ s❛✐ sât ❞➵ ①↔② r❛✱ t❤➻ ✈ỵ✐ sü
❤é trđ ❝õ❛ ❝→❝ ♣❤➛♥ ♠➲♠ ❝❤✉②➯♥ ❞ư♥❣ ❝❤ó♥❣ t❛ ❝❤➾ ❝➛♥ ✈➔✐ ♣❤ót t❤➟♠
❝❤➼ ✈➔✐ ❣✐➙②✳ ▼➦t ❦❤→❝✱ ♥❤✐➲✉ ✈➜♥ ✤➲ ❧➼ t❤✉②➳t ✭sü ❤ë✐ tö✱ tè❝ ✤ë ❤ë✐ tö✱
✤ë ❝❤➼♥❤ ①→❝✱ ✤ë ♣❤ù❝ t↕♣ t➼♥❤ t♦→♥✱ ✳✳✳✮ s➩ ✤÷đ❝ ♥❤➻♥ t❤➜② rã ❤ì♥ ❦❤✐
sû ❞ö♥❣ ❝→❝ ♣❤➛♥ ♠➲♠ ♥➔②✳ ❱➻ ✈➟②✱ ✈✐➺❝ sû ❞ư♥❣ t❤➔♥❤ t❤↕♦ ❝→❝ ❝ỉ♥❣
❝ư t➼♥❤ t♦→♥ ❧➔ ❝➛♥ t❤✐➳t ❝❤♦ ❝ỉ♥❣ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉✱ ♥❤➜t ❧➔ ✤è✐ ✈ỵ✐ ❤å❝
s✐♥❤ ✈➔ s✐♥❤ ✈✐➯♥✳
❱ỵ✐ ♠♦♥❣ ♠✉è♥ ❧➔ t➻♠ ❤✐➸✉ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥
✤ó♥❣ ♥❤➡♠ ✤→♣ ù♥❣ ♥❣✉②➺♥ ồ ự ồ ừ t
ỗ tớ ữủ sỹ ủ ỵ ở ừ ữợ ❞➝♥ ✕ ❚❙✳ ▲➯
❍↔✐ ❚r✉♥❣ ♥➯♥ tæ✐ ❧ü❛ ❝❤å♥ ✤➲ t➔✐✿ ✓Ù♥❣ ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛
❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤✔ ❝❤♦ ❧✉➟♥ ✈➠♥

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



tèt ♥❣❤✐➺♣ ❝õ❛ ♠➻♥❤✳

✷✳ ▼ö❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉

▼ö❝ ✤➼❝❤ ❝õ❛ ✤➲ t➔✐ ❧➔ sû ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ✤➸ ①❡♠ ①➨t

✈➔ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✱ tø õ s s s số ợ
ừ ữỡ tr õ ỗ tớ ự ự ử
tt ✤➸ ✈✐➳t ❝❤÷ì♥❣ tr➻♥❤ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ t❤❡♦
♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ✈➔ ♠ỉ t↔ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ ♣❤÷ì♥❣ tr
ỗ t tổ q õ ✤÷đ❝ ❧➟♣ tr➻♥❤✳

✸✳ ✣è✐ t÷đ♥❣ ✈➔ ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉

✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉✿ ◆❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ✤➸ t➻♠
♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❧➟♣ tr➻♥❤ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣
tr♦♥❣ ▼❛t❤❡♠❛t✐❝❛✳
P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉✿ ◆❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ❝❤♦ ❝→❝
♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥✳
P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉✿ ❚➻♠ ✤å❝ t➔✐ ❧✐➺✉ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣
✈➔ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ t➼♥❤ ①➜♣ ①➾ ❦❤→❝❀ ♣❤➙♥ t➼❝❤ t➔✐ ❧✐➺✉❀ ❤➺ t❤è♥❣ ❤â❛❀
❦❤→✐ q✉→t ❤â❛ t➔✐ ❧✐➺✉ ✈➔ ❦✐➸♠ ❝❤ù♥❣✳

✹✳ Þ ♥❣❤➽❛ ❦❤♦❛ ❤å❝ ✈➔ t❤ü❝ t✐➵♥ ❝õ❛ ✤➲ t
t õ ỵ t ỵ tt õ t❤➸ sû ❞ư♥❣ ♥❤÷ ❧➔ t➔✐ ❧✐➺✉

t❤❛♠ ❦❤↔♦ ❞➔♥❤ ❝❤♦ s✐♥❤ ✈✐➯♥ ✈➔ ❝→❝ ✤è✐ t÷đ♥❣ ❝â ♠è✐ q✉❛♥ t➙♠ ✤➳♥
♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ✈➔ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛✳

✺✳ ❈➜✉ tró❝

t

ỗ ✸ ❝❤÷ì♥❣

❈❤÷ì♥❣ ✶✿ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à✳
❈❤÷ì♥❣ ✷✿ P❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ t➻♠ ♥❣❤✐➺♠ ❣➛♥
✤ó♥❣✳
❈❤÷ì♥❣ ✸✿ Ù♥❣ ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ ❞➙②
❝✉♥❣✳

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




▲❮■ ❈❷▼ ❒◆
❊♠ ①✐♥ ❜➔② tä sü ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❇❛♥ ●✐→♠ ❍✐➺✉ tr÷í♥❣ ✣↕✐
❤å❝ ❙÷ P❤↕♠ ✲ ✣↕✐ ❍å❝ ✣➔ ◆➤♥❣✱ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❦❤♦❛ ❚♦→♥✱ ✤➣ t↕♦ ❝ì
❤ë✐ ❝❤♦ ❝❤ó♥❣ ❡♠ ✤÷đ❝ ❧➔♠ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣✳ ❈❤ó♥❣ ❡♠ ①✐♥ ❣û✐ ❧í✐
❝↔♠ ì♥✱ ❧í✐ tr✐ ➙♥ s➙✉ s➢❝ ✤➳♥ t➜t ❝↔ ❝→❝ t❤➛② ❝æ ❣✐→♦ tr♦♥❣ tr÷í♥❣✱ ✤➦❝
❜✐➺t ❧➔ ❝→❝ t❤➛② ❝ỉ ❣✐→♦ tr♦♥❣ ❦❤♦❛ ❚♦→♥ ✤➣ t➟♥ t➻♥❤ ❝❤➾ ❞↕②✱ tr✉②➲♥ ✤↕t
❝❤♦ ❝❤ó♥❣ ❡♠ ♥❤ú♥❣ tự ờ qỵ tr sốt tớ ❣✐❛♥
✈ø❛ q✉❛✳ ❳✐♥ ❝↔♠ ì♥ sü ❣✐ó♣ ✤ï✱ ❝❤✐❛ s➫ ❝õ❛ t➜t ❝↔ ❝→❝ ❜↕♥ tr♦♥❣ ❧ỵ♣
tr♦♥❣ t❤í✐ ❣✐❛♥ ❝❤ó♥❣ ❡♠ ❧➔♠ ♥❣❤✐➯♥ ❝ù✉✳
❈✉è✐ ❝ò♥❣✱ ❡♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ỡ t r ữớ
trỹ t ữợ ❞➝♥ ❝❤ó♥❣ ❡♠✱ ❧✉ỉ♥ q✉❛♥ t➙♠✱ ✤ë♥❣ ✈✐➯♥ ❝❤➾ ❞➝♥ t➟♥
t➻♥❤ ✤➸ ❝❤ó♥❣ ❡♠ ❤♦➔♥ t❤➔♥❤ tèt ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ♥➔②✳
❚✉② ✤➣ ❝â ♥❤✐➲✉ ❝è ❣➢♥❣ s♦♥❣ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ✈➝♥ ❦❤æ♥❣ tr→♥❤
❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât ✈➲ ♥ë✐ ❞✉♥❣ ❧➝♥ ❤➻♥❤ t❤ù❝ tr➻♥❤ ❜➔②✱ ❝❤ó♥❣ ❡♠ r➜t
♠♦♥❣ ♥❤➟♥ ữủ sỹ õ õ ừ qỵ t ổ ✤å❝✳
❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥✦


❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




❈❤÷ì♥❣ ✶

▼❐❚ ❙➮ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚
✶✳✶ ❑❍⑩■ ◆■➏▼ ❱➋ ❙➮ ●❺◆ ✣Ĩ◆●
✶✳✶✳✶ ❙❛✐ sè t✉②➺t ✤è✐✱ s❛✐ sè t÷ì♥❣ ố
r t t t tữớ ợ ❣✐→ trà ❣➛♥ ✤ó♥❣ ❝õ❛

a ❧➔ sè ❣➛♥ ✤ó♥❣ ❝õ❛ a∗ ♥➳✉ a ❦❤ỉ♥❣ s❛✐ ❦❤→❝ a∗

♥❤✐➲✉✳ ✣↕✐ ❧÷đ♥❣ ∆ := |a − a | ❣å✐ ❧➔ s❛✐ sè t❤➟t sü ❝õ❛ a✳ ❉♦ ❦❤ỉ♥❣ ❜✐➳t
a∗ ♥➯♥ t❛ ❝ơ♥❣ ❦❤ỉ♥❣ ❜✐➳t ∆✳ ❚✉② ♥❤✐➯♥✱ t❛ ❝â t❤➸ t➻♠ ✤÷đ❝ ∆a ≥ 0 ✱
❣å✐ ❧➔ s❛✐ sè t✉②➺t ✤è✐ ❝õ❛ a✱ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥✿
❝→❝ ✤↕✐ ❧÷đ♥❣✳ ❚❛ ♥â✐

|a − a∗ | ≤ ∆a
❤❛②

a − ∆a ≤ a∗ ≤ a + ∆a✳

✣÷ì♥❣ ♥❤✐➯♥

❝➔♥❣ ♥❤ä ❝➔♥❣ tèt✳ ❙❛✐ sè t÷ì♥❣ ✤è✐ ❝õ❛


δa :=

a

∆a

✭✶✳✶✮
t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✭✶✳✶✮

❧➔

∆a
|a|

✶✳✶✳✷ ❙❛✐ sè t❤✉ ❣å♥
▼ët sè t❤➟♣ ♣❤➙♥

a

❝â ❞↕♥❣ tê♥❣ q✉→t ♥❤÷ s❛✉✿

a = ±(βp 10p + βp−1 10p−1 + ... + βp−s 10p−s )
0 ≤ βi ≤ 9(i = p − 1, p − s); βp > 0 ❧➔ ♥❤ú♥❣ sè ♥❣✉②➯♥✳ ◆➳✉
p − s ≥ 0 t❤➻ a ❧➔ sè ♥❣✉②➯♥❀ p − s = m(m > 0) t a õ ỗ
m ❝❤ú sè✳ ◆➳✉ s = +∞✱ a ❧➔ sè t❤➟♣ ♣❤➙♥ ✈æ ❤↕♥✳ ❚❤✉ ❣å♥ ♠ët sè a ❧➔
✈ùt ❜ä ♠ët sè ❝→❝ ❝❤ú sè ❜➯♥ ♣❤↔✐ a ✤➸ ✤÷đ❝ ♠ët sè a ♥❣➢♥ ❣å♥ ❤ì♥ ✈➔
❣➛♥ ✤ó♥❣ ♥❤➜t ✈ỵ✐ a✳
❚r♦♥❣ ✤â

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P


❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



◗✉✐ t➢❝ t❤✉ ❣å♥✿ ●✐↔ sû

a = (βp 10p + ... + βj 10j + ... + βp−s 10p−s )
✈➔ t❛ ❣✐ú ❧↕✐ ✤➳♥ sè ❤↕♥❣ t❤ù ❥✳ ●å✐ ♣❤➛♥ ✈ùt ❜ä ❧➔

µ✱

t❛ ✤➦t

a = βp 10p + ... + βj+1 10j+1 + βj 10j )
tr♦♥❣ ✤â✿

βj + 1 ♥➳✉
βj

j :=


à = 0.5 ì 10j

t

j = j




0.5 ì 10j < à < 10j ,
0 < à < 0.5 ì 10j ,
βj

βj = βj+1

❧➔ ❝❤➤♥ ✈➔

✭✶✳✷✮

♥➳✉

βj

❧➫ ✈➻

t➼♥❤ t♦→♥ ✈ỵ✐ sè ❝❤➤♥ t❤✉➟♥ t✐➺♥ ❤ì♥✳

✶✳✷ ❙❆■ ❙➮ ❚➑◆❍ ❚❖⑩◆
❚r♦♥❣ t➼♥❤ t♦→♥ t❛ t❤÷í♥❣ ❣➦♣ ✹ ❧♦↕✐ s❛✐ sè s❛✉✿
❛✮ ❙❛✐ sè tt ổ õ ỵ tữ õ ❜➔✐ t♦→♥ t❤ü❝ t➳✳
❙❛✐ sè ♥➔② ❦❤ỉ♥❣ ❧♦↕✐ trø ✤÷đ❝✳
❜✮ ❙❛✐ sè ♣❤÷ì♥❣ ♣❤→♣ ✲ ❈→❝ ❜➔✐ t♦→♥ t❤÷í♥❣ ❣➦♣ r➜t ♣❤ù❝ t↕♣✱ ❦❤ỉ♥❣
t❤➸ ❣✐↔✐ ✤ó♥❣ ✤÷đ❝ ♠➔ ♣❤↔✐ sû ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣➛♥ ✤ó♥❣✳ ❙❛✐ sè
♥➔② s➩ ✤÷đ❝ ♥❣❤✐➯♥ ❝ù✉ ❝❤♦ tø♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❝ư t❤➸✳
❝✮ ❙❛✐ sè ❝→❝ sè ❧✐➺✉ ✲ ❈→❝ sè ❧✐➺✉ t❤÷í♥❣ t❤✉ ✤÷đ❝ ❜➡♥❣ t❤ü❝ ♥❣❤✐➺♠
❞♦ ✤â ❝â s❛✐ sè✳
❞✮ ❙❛✐ sè t➼♥❤ t♦→♥ ✲ ❈→❝ sè ✈è♥ ✤➣ ❝â s❛✐ sè✱ ❝á♥ t❤➯♠ s❛✐ sè t❤✉ ❣å♥
♥➯♥ ❦❤✐ t➼♥❤ t♦→♥ s➩ ①✉➜t ❤✐➺♥ s❛✐ sè t➼♥❤ t♦→♥✳

●✐↔ sû ♣❤↔✐ t➻♠ ✤↕✐ ❧÷đ♥❣ ② t❤❡♦ ❝æ♥❣ t❤ù❝✿

y = f (x1 , x2 , ..., xn )
●å✐

x∗i , y ∗ (i = 1, n)

✈➔

❝→❝ ✤è✐ sè ✈➔ ❤➔♠ sè✳

xi , y(i = 1, n) ❧➔ ❝→❝ ❣✐→ trà
◆➳✉ f ❦❤↔ ✈✐ ❧✐➯♥ tư❝ t❤➻

✤ó♥❣ ✈➔ ❣➛♥ ✤ó♥❣ ❝õ❛

n


|y − y | = |f (x1 , ..., xn ) −

f (x∗1 , ..., x∗n )|

|fi ||xi − x∗i |.

=
i=1

df
fi ❧➔ ✤↕♦ ❤➔♠ dx

t➼♥❤ t↕✐
i
∆xi ❦❤→ ❜➨ t❛ ❝â t❤➸ ❝♦✐

tr♦♥❣ ✤â
tư❝ ✈➔

❝→❝ t❤í✐ ✤✐➸♠ tr✉♥❣ ❣✐❛♥✳ ❉♦

df
dxi ❧✐➯♥

n

|fi (x1 , ..., xn )|∆xi .

∆y =
i=1
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



❉♦ ✤â

∆y
δy =
=
|y|


n

|
i=1

d
ln f |∆xi .
dxi

✶✳✸ ◆●❍■➏▼ ❱⑨ ❑❍❖❷◆● P❍❹◆ ▲■ ◆●❍■➏▼
✶✳✸✳✶ ◆❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥
❳➨t ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥✿

f (x) = 0
tr♦♥❣ ✤â

f

✭✶✳✸✮

❧➔ ♠ët ❤➔♠ sè trữợ ừ ố số

x

tỹ ừ ữỡ tr ❧➔ sè t❤ü❝
❧➔ ❦❤✐ t❤❛②

α


✈➔♦

x

α

t❤ä❛ ♠➣♥ ✭✶✳✸✮ tù❝

ð ✈➳ tr→✐ t ữủ

f () = 0.



ị ồ ừ
ỗ t ừ số

y = f (x)



tr ♠ët ❤➺ tå❛ ✤ë ✈✉æ♥❣ ❣â❝ ❖①② ✭❍➻♥❤ ✶✳✶✮✳ ●✐↔ sỷ ỗ t t trử
t ởt

x =

M

t ✤✐➸♠


M

♥➔② ❝â t✉♥❣ ✤ë

y=0

✈➔ ❤♦➔♥❤ ✤ë

❚❤❛② ❝❤ó♥❣ ✈➔♦ ✭✶✳✺✮ t❛ ✤÷đ❝✿

0 = f (α)
❱➟② ❤♦➔♥❤ ✤ë

α

❝õ❛ ❣✐❛♦ ✤✐➸♠

M

✭✶✳✻✮

❝❤➼♥❤ ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ✭✶✳✸✮✳

❍➻♥❤ ✶✳✶✿ Þ ♥❣❤➽❛ ❤➻♥❤ ❤å❝ ❝õ❛ ♥❣❤✐➺♠
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




rữợ ỗ t t ụ õ t t ữỡ tr
ữỡ tr tữỡ ữỡ

g(x) = h(x)



ỗ ỗ t ừ số

y = g(x), y = h(x)
sỷ ỗ t t t↕✐ ✤✐➸♠ ▼ ❝â ❤♦➔♥❤ ✤ë

✭✶✳✽✮

x=α

g(α) = h(α)

t❤➻ t❛ ❝â✿
✭✶✳✾✮

❍➻♥❤ ỗ t số g(x), h(x)




ừ ừ ỗ t ởt

ừ tự ừ


ỹ tỗ t tỹ ừ ữỡ tr ởt
rữợ t t ❣➛♥ ✤ó♥❣ ♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮
t❛ ♣❤↔✐ tü ọ tỹ õ tỗ t ổ tr ớ t
õ t ũ ữỡ ỗ t ð ♠ư❝ ✶✳✸✳✷ tr➯♥✳ ❚❛ ❝ơ♥❣ ❝â t❤➸ ❞ị♥❣
✤à♥❤ ❧➼ s



õ số tỹ

a b(a < b) s❛♦ ❝❤♦ f (a) ✈➔ f (b) tr→✐

❞➜✉ tù❝

f (a).f (b) < 0
ỗ tớ

f (x)

tử tr

[a, b]



t ð tr♦♥❣ ❦❤♦↔♥❣

(a, b)

❝â ➼t ♥❤➜t


♠ët ♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮✳
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✶✶

❈❤ù♥❣ ♠✐♥❤✿
❈❤✐❛ ✤♦↕♥

[a, b]



◆➳✉

f ( a+b
2 ).f (a) > 0

t❤➻ ✤➦t

a1 =



◆➳✉

f ( a+b

2 ).f (a) < 0

t❤➻ ✤➦t

a1 = a; b1 =

❈❤✐❛ ✤♦↕♥

[a1 , b1 ]

a+b
2 ✳

t❤➔♥❤ ❤❛✐ ♣❤➛♥ ❜➡♥❣ ♥❤❛✉ ❜ð✐ ✤✐➸♠

a+b
2 ; b1

= b✳
a+b
2 ✳

t❤➔♥❤ ❤❛✐ ♣❤➛♥ ❜➡♥❣ ♥❤❛✉ ❜ð✐ ✤✐➸♠



◆➳✉

1
f ( a1 +b

2 ).f (a1 ) > 0

t❤➻ ✤➦t

a2 =

a1 +b1
2 ; b2

= b1 ✳



◆➳✉

1
f ( a1 +b
2 ).f (a1 ) < 0

t❤➻ ✤➦t

a2 = a1 ; b2 =

a1 +b1
2 ✳

a1 +b1
2 ✳

...

{an }, {bn } ♠➔ {an }
✈ỵ✐ f (a)✱ f (bn ) ❝ị♥❣

❈ù t✐➳♣ tư❝ q✉→ tr➻♥❤ tr➯♥ t❛ ①→❝ ✤à♥❤ ✤÷đ❝ ❤❛✐ ❞➣②
❧➔ ❞➣② t➠♥❣✱

{bn }

❧➔ ❞➣② ❣✐↔♠ ✈➔

f (b)✳
⇒ f (an ).f (bn ) < 0, ∀n ∈ N ✳
❉➣② {an } t➠♥❣✱ ❜à ❝❤➦♥ tr➯♥

f (an )

❝ị♥❣ ❞➜✉

❞➜✉ ✈ỵ✐

❉➣②

{bn }

❜ð✐

b ⇒ lim an

tỗ t


ữợ

a lim bn

tỗ t↕✐✳

n→∞

n→∞

α = lim an ✱ β = lim bn ✱
n→∞
n→∞
⇒ lim (bn − an ) = β − α✳

✣➦t

n→∞

bn − an = b−a
2n ; ∀n ∈ N ✳
♥➯♥ lim (bn − an ) = 0 ⇒ β − α = 0 ⇒ β = α✳
n→∞
⇒ lim bn = lim an = α = β ✳
n→∞
n→∞
⇒ lim f (bn ) = f (α) = lim f (an )✳
▼➔

n→∞


n→∞

⇒ 0 ≥ f (α) ≥ 0 ⇒ f (α) = 0

✈➔

α ∈ (a, b)✳

❱➟② ✤à♥❤ ❧➼ ✶✳✶ ✤➣ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤

✣✐➲✉ ✤â ❝â t ữủ ồ tr ỗ t ỗ t❤à ❝õ❛ ❤➔♠


y = f (x)

t↕✐

a≤x≤b

❧➔ ♠ët ✤÷í♥❣ ❧✐➲♥ ♥è✐

ữợ tr trö❝ ❤♦➔♥❤✱ ♥➯♥ ♣❤↔✐ ❝➢t trö❝ ❤♦➔♥❤ t↕✐ ➼t ♥❤➜t ♠ët
✤✐➸♠ ð tr♦♥❣ ❦❤♦↔♥❣ tø ❛ ✤➳♥ ❜✳ ❱➟② ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ ❝â ➼t ♥❤➜t ♠ët
♥❣❤✐➺♠ ð tr♦♥❣ ❦❤♦↔♥❣

(a, b)✳

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P


❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




ỗ t ừ số y(x) t a ≤ x ≤ b

✶✳✸✳✹ ❑❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠

✣à♥❤ ♥❣❤➽❛ ✶✳✶✳

❑❤♦↔♥❣

(a, b)

♥➔♦ ✤â ❣å✐ ❧➔ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠

❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ ♥➳✉ ♥â ❝❤ù❛ ♠ët ✈➔ ❝❤➾ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣
tr➻♥❤ ✤â✳
✣➸ t➻♠ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ t❛ ❝â ✤à♥❤



(a, b) ởt
tớ f (a) f (b) tr



ỡ ỗ


tr õ số

f (x)

tö❝

❞➜✉✱ tù❝ ❧➔ ❝â ✭✶✳✶✵✮ t❤➻

(a, b)

❧➔ ♠ët ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮✳

❈❤ù♥❣ ♠✐♥❤✿
❚ø ❣✐↔ t❤✐➳t✱ ✈➻

f (x)

❧✐➯♥ tư❝ ✈➔ ✤ì♥ ✤✐➺✉ ♥➯♥ tr➯♥

(a, b)✱ f (x)

t➠♥❣

❤♦➦❝ ❣✐↔♠✳
❍ì♥ ♥ú❛✱ tø ✤✐➲✉ ❦✐➺♥
❤➔♠ sè

f (x)

f (a).f (b) < 0


ự tọ út ừ ỗ t

♣❤➼❛ ❝õ❛ trư❝ ❤♦➔♥❤✳

❑➳t ❤đ♣ ✈ỵ✐ t➼♥❤ ✤ì♥ ✤✐➺✉ ❝õ❛ ❤➔♠ sè t❛ s✉② r❛
❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤

(a, b)

❧➔ ❦❤♦↔♥❣ ♣❤➙♥

f (x) = 0✳

❱➟② ✤à♥❤ ❧➼ ✶✳✷ ✤➣ ✤÷đ❝ ự
õ t ồ ỗ t ỗ t ừ

y = f (x) t trö❝ ❤♦➔♥❤ t↕✐ ♠ët ✈➔ ❝❤➾ ♠ët ✤✐➸♠
(a, b) ❝❤ù❛ ♠ët ✈➔ ❝❤➾ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤



❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

ð tr♦♥❣

(a, b)✳

❱➟②


✭✶✳✸✮✳

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✶✸

❍➻♥❤ ✶✳✹✿ ❑❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ f (x) = 0
f (x) ❝â ✤↕♦ ❤➔♠ t❤➻ ✤✐➲✉ ❦✐➺♥ ✤ì♥ ✤✐➺✉ ❝â t❤➸
❦❤ỉ♥❣ ✤ê✐ ❞➜✉ ❝õ❛ ✤↕♦ ❤➔♠ ✈➻ ✤↕♦ ❤➔♠ ❦❤ỉ♥❣ ✤ê✐

◆➳✉
❦✐➺♥

t❤❛② ❜➡♥❣ ✤✐➲✉
❞➜✉ t❤➻ ❤➔♠ sè

✤ì♥ ✤✐➺✉✳ õ




f (x)

(a, b) ởt tr ✤â ❤➔♠ f (x) ❧✐➯♥ tö❝✱ ✤↕♦
✤ê✐ ❞➜✉ ✈➔ f (a)✱ f (b) tr→✐ ❞➜✉ t❤➻ (a, b) ❧➔ ♠ët ❦❤♦↔♥❣

◆➳✉

❦❤ỉ♥❣


♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮✳
▼✉è♥ t➻♠ ❝→❝ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ t❤÷í♥❣
♥❣÷í✐ t❛ ♥❣❤✐➯♥ ❝ù✉ sü ❜✐➳♥ t❤✐➯♥ ❝õ❛ ❤➔♠ sè

y = f (x) rỗ ử





ữỡ tr

f (x) = x3 − x − 1.

✭✶✳✶✶✮

❍➣② ❝❤ù♥❣ tä ♣❤÷ì♥❣ tr➻♥❤ õ tỹ t

rữợ t t❛ ①➨t sü ❜✐➳♥ t❤✐➯♥ ❝õ❛ ❤➔♠ sè
tö❝ t↕✐ ♠å✐

x✱

f (x)

õ

ỗ tớ


1
f (x) = 3x2 1 = 0 ⇐⇒ x = ± √ .
3
❚❛ ❝â ❜↔♥❣ ❜✐➳♥ t❤✐➯♥ ♥❤÷ tr♦♥❣ ❍➻♥❤ ✶✳✺✿
tr♦♥❣ ✤â✿

1
1
1
2
f (M ) = f (− √ ) = − √ + √ − 1 = √ − 1 < 0
3
3 3 3 3
3 3

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✶✹

❍➻♥❤ ✶✳✺✿ ❇↔♥❣ ❜✐➳♥ t❤✐➯♥ ❝õ❛ ❤➔♠ sè f (x) = x3 x 1

ỗ t t trử ❤♦➔♥❤ t↕✐ ♠ët ✤✐➸♠ ❞✉② ♥❤➜t ✭❍➻♥❤ ✶✳✻✮✱ ❞♦ ✤â
♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✶✮ ❝â ♠ët ♥❣❤✐➺♠ t❤ü❝ ❞✉② ♥❤➜t✱ ❦➼ ❤✐➺✉ õ



ỗ t số f (x) = x3 − x − 1 tr♦♥❣ ❦❤♦↔♥❣ [1, 2]

f (1) = 13 − 1 − 1 = −1 < 0❀ f (2) = 23 − 2 − 1 = 5 > 0✳
◆❤÷ ✈➟②✱ f (1).f (2) < 0✳
❱➟② ❦❤♦↔♥❣ (1, 2) ❝❤ù❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✶✮✳
❚❛ t➼♥❤ t❤➯♠✿

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




ữỡ

Pì PP
ể ế

●■❰■ ❚❍■➏❯
✷✳✶✳✶ ✣➦t ✈➜♥ ✤➲
❈❤ó♥❣ t❛ t❤÷í♥❣ t➻♠ ❤✐➸✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ t➻♠ ♥❣❤✐➺♠ trü❝ t✐➳♣✳ ◆➳✉
♠å✐ t➼♥❤ t♦→♥ ❝õ❛ t❛ ❧➔ ❝❤➼♥❤ ①→❝ t❤➻ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ✤â ❝❤♦ ❦➳t q✉↔
❤♦➔♥ t♦➔♥ ❝❤➼♥❤ ①→❝✳ ❚✉② ♥❤✐➯♥ tr♦♥❣ t❤ü❝ t➳ ❦❤✐ t➼♥❤ t♦→♥ ❝❤ó♥❣ t❛
t❤÷í♥❣ ①✉②➯♥ ♣❤↔✐ ❧➔♠ trá♥ ❝→❝ sè✱ ♥❣❤➽❛ ❧➔ t❛ ❝❤➾ t➼♥❤ t♦→♥ tr➯♥ ❝→❝
sè ❣➛♥ ú tổ õ ữ rt ợ t q ố ũ
ố ợ ữỡ tr số t✉②➳♥ t➼♥❤ ✏♥❤↕② ❝↔♠✑ ✈ỵ✐ s❛✐ sè✳ ❱➻ ✈➟②✱
❝❤ó♥❣ t❛ ♥➯♥ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣➛♥ ✤ó♥❣ ✤➸ t➻♠ ♥❣❤✐➺♠ ❝õ❛
♠ët ♣❤÷ì♥❣ tr➻♥❤✳
❈❤♦ ♣❤÷ì♥❣ tr➻♥❤✿

f (x) = 0

tr♦♥❣ ✤â

f

✭✷✳✶✮

❧➔ ♠ët ❤➔♠ ✤↕✐ sè ❤♦➦❝ s✐➯✉ ✈✐➺t✳ ❚➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣

tr➻♥❤ ✭✷✳✶✮ ❧➔ ♠ët ❜➔✐ t♦→♥ t❤÷í♥❣ ❣➦♣ tr♦♥❣ ❦ÿ t❤✉➟t✳ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✸✮ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè ❜➟❝ ♥ ❝â ❞↕♥❣✿

a0 xn + a1 xn−1 + ... + an−1 x + an = 0(a0 = 0),
t❤➻ ✈ỵ✐

n = 1, n = 2✱

✭✷✳✷✮

t❛ ❝â ❝æ♥❣ t❤ù❝ t➼♥❤ ♥❣❤✐➺♠ ♠ët ❝→❝❤ ✤ì♥ ❣✐↔♥✳

◆❣÷í✐ t❛ ❝ơ♥❣ t➻♠ r❛ ♥❤ú♥❣ ❝ỉ♥❣ t❤ù❝ t➼♥❤ ♥❣❤✐➺♠ ❝õ❛ ✭✷✳✷✮ ❦❤✐
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

n=3

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✶✻
✈➔


n = 4✱ ♥❤÷♥❣ ✈✐➺❝ sû ❞ư♥❣ r➜t ♣❤ù❝ t↕♣✳ ỏ ợ ỳ ữỡ tr

số tứ tr ❧➯♥ ❤♦➦❝ ♣❤÷ì♥❣ tr➻♥❤ s✐➯✉ ✈✐➺t t❤➻ ❦❤ỉ♥❣ ❝â ❝ỉ♥❣
t❤ù❝ t➼♥❤ ♥❣❤✐➺♠✳ ❱➻ ✈➟②✱ ✈✐➺❝ t➻♠ ♥❤ú♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❣➛♥ ✤ó♥❣ ✤➸ ❣✐↔✐
♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè ✈➔ s✐➯✉ ✈✐➺t ❝ơ♥❣ ♥❤÷ ✈✐➺t ✤→♥❤ ❣✐→ ♠ù❝ ✤ë ❝❤➼♥❤
①→❝ ❝õ❛ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ t➻♠ ✤÷đ❝ ❝â ♠ët ✈❛✐ trá q✉❛♥ trå♥❣✳

✷✳✶✳✷ ❈→❝❤ ❣✐↔✐ q✉②➳t
❚❤ỉ♥❣ t❤÷í♥❣✱ q✉→ tr➻♥❤ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ ❜❛♦ ỗ ữợ s

ã

ữợ sỡ ở é t t ởt ừ ự


ã

f (x)

ữợ ❣✐↔✐ ❦✐➺♥ t♦➔♥✿ ❚➻♠ ♥❣❤✐➺♠ ✈ỵ✐ ✤ë ❝❤➼♥❤ ①→❝ ❝➛♥ t❤✐➳t✳

✣➸ ❣✐↔✐ sì ❜ë ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ t❛ ❝â t❤➸ sû ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ✤ì♥
❣✐↔♥ ♥❤÷ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ổ ữỡ ỗ t

Pữỡ ổ
sû ❤➔♠ sè f (x) ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ ❬❛✱ ❜❪ ✈➔ f (a).f (b) < 0.
●å✐ ∆0 := [a, b]✱ t❛ ❝❤✐❛ ✤æ✐ ∆0 ✈➔ ❝❤å♥ ∆1 := [a1 , b1 ] ❧➔ ♠ët tr♦♥❣ ❤❛✐
♥û❛ ❝õ❛ ∆0 s❛♦ ❝❤♦ f (a1 ).f (b1 ) ≤ 0.
◆â✐ ❝❤✉♥❣ ð ữợ tự n t õ


n = [an , bn ] ⊂ ∆n−1 ⊂ ... ⊂ ∆0 .
bn − an =

(b−a)
2n

→ 0✭❦❤✐ n → ∞✮✳ ❉➵ t❤➜② ❞➣② an ✤ì♥ ✤✐➺✉
t➠♥❣✱ ❜à ❝❤➦♥ tr➯♥ ❜ð✐ b ❝á♥ ❞➣② bn ✤ì♥ ✤✐➺✉ ữợ a
ỡ ỳ bn an → 0 s✉② r❛ an , bn → α(n → ∞).
2
❱➻ f (an ).f (bn ) ≤ 0 ♥➯♥ ❝❤♦ n → ∞✱ t❛ ❝â [f (α)] ≤ 0✱ s✉② r❛ f (α) = 0✳
◆❣♦➔✐ r❛

◆❣♦➔✐ r❛✱ t❛ ❝â ÷ỵ❝ ❧÷đ♥❣ s❛✐ sè s❛✉✿

0 ≤ α − an ≤ b n an =

ba
.
2n

ì ừ ữỡ ✤ỉ✐ ❧➔ t❤✉➟t t♦→♥ r➜t ✤ì♥ ❣✐↔♥✱ ❞♦ ✤â ❞➵
❧➟♣ tr➻♥❤ tr➯♥ ♠→② t➼♥❤✳ ▼➦t ❦❤→❝✱ ✈➻ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐ sû ❞ư♥❣ r➜t

f ♥➯♥ tè❝ ✤ë ❤ë✐ tư ❦❤→
Pữỡ ỗ t
ỗ t số y = f (x) tr➯♥ ❣✐➜② ❦➫ æ ✈✉æ♥❣✳

➼t t❤æ♥❣ t✐♥


ở ừ

ừ ỗ t õ tr ✈ỵ✐ trư❝ ❤♦➔♥❤ ❝❤➼♥❤ ❧➔ ♥❣❤✐➺♠ ❝➛♥ t➻♠✳ ◆❤✐➲✉

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✶✼
f (x) = 0 ✈➲ ❞↕♥❣ t÷ì♥❣ ✤÷ì♥❣ ϕ(x) = (x)
ở ừ ừ ỗ t y = ϕ(x) ✈➔

❦❤✐ t❛ ❜✐➯♥ ✤ê✐ ♣❤÷ì♥❣ tr➻♥❤
◆❣❤✐➺♠ ❝➛♥ t➻♠ ❧➔ ❤♦➔♥❤

y = ψ(x)✳

❱➼ ❞ö ✷✳✶✿

❚➻♠ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ s❛✉✿


3x − 2 8 x − 5 = 0.

✭✷✳✸✮


y = f (x) = 3x − 2 8 x − 5✳ ❚❛ ❝â t❤➸ ❞➵ ❞➔♥❣ t➼♥❤ ✤÷đ❝ f (0) = −5


8
✈➔ f (5) = 3.5 − 2 5 − 5
7, 5543109 > 0✳ ❉♦ ✤â✱ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✮ ❝â
➼t ♥❤➜t ✶ ♥❣❤✐➺♠ tr♦♥❣ ❦❤♦↔♥❣ (0, 5)✳ ✣➸ ①❡♠ ồ ừ

t

ỗ t t õ t ớ tt ỗ t tr

(0, 5).


ỗ t t t ỗ t t trử ❤♦➔♥❤ t↕✐ ♠ët ✤✐➸♠ tr♦♥❣
❦❤♦↔♥❣
t↕✐ ❝→❝

(2, 3)✳ ❚✉② ♥❤✐➯♥✱ ✤➸ ❝❤➼♥❤ ①→❝ ❤ì♥ t❛ ❝➛♥ t➼♥❤ ❣✐→ trà ❝õ❛ ❤➔♠ sè
✤✐➸♠ x = 2 ✈➔ x = 3✳ ❚❛ ❝â✿ f (2) = −1, 181 < 0, f (3) = 1, 706 >

0✳
❱➟② ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✮ ❝â ♠ët ♥❣❤✐➺♠ ❞✉② ♥❤➜t tr♦♥❣ ❦❤♦↔♥❣

(2, 3)

❙❛✉ ❦❤✐ ✤➣ t→❝❤ ✤÷đ❝ ♥❣❤✐➺♠ t❤➻ ❝æ♥❣ ✈✐➺❝ t✐➳♣ t❤❡♦ ❧➔ ❝❤➼♥❤ ①→❝ ❤â❛
♥❣❤✐➺♠ ✤➳♥ ✤ë tt tỹ ữợ t ❝â t❤➸ sû
❞ư♥❣ ♠ët tr♦♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ s❛✉✿ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣✱ ♣❤÷ì♥❣ ♣❤→♣
❞➙② ❝✉♥❣✱ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥✱ ✳✳✳ ◆❤÷♥❣ ❞♦ t❤í✐ ❣✐❛♥ ❝â ❤↕♥ ♥➯♥
tr♦♥❣ ♣❤↕♠ ✈✐ ❜➔✐ ❧✉➟♥ ✈➠♥ ♥➔②✱ tỉ✐ s➩ tr➻♥❤ ❜➔② ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣

❣✐↔✐ ❣➛♥ ✤ó♥❣ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✳

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍




Pì PP
ổ t ữỡ
sỷ r➡♥❣ t❛ ✤➣ t➻♠ ✤÷đ❝ ♠ët ❦❤♦↔♥❣ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮
❧➔

(a, b)✳

❚❛ ❧✉ỉ♥ ❣✐↔ t❤✐➳t ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉ t❤ã❛ ♠➣♥✿
❞✉② ♥❤➜t tr➯♥

(a, b)

❦❤æ♥❣ ✤ê✐ ❞➜✉ tr➯♥

(a, b)

❛✳ P❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ ❝â ♥❣❤✐➺♠
❜✳

f ∈ C 2 [a, b]


f (x), f (x)

✈➔

α

❱➲ ♥❣✉②➯♥ t➢❝ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ❝ơ♥❣ ❣✐è♥❣ ♥❤÷ ♣❤÷ì♥❣ ♣❤→♣
❝❤✐❛ ✤ỉ✐✱ ♥❣❤➽❛ ❧➔ ❞ü❛ ✈➔♦ ❤❛✐ ✤✐➸♠
t✐➳♣ ❝→❝ ✤✐➸♠

xn

a0 = a, b0 = b

❜❛♥ ✤➛✉✱ t❛ s➩ ❝❤å♥

♥➡♠ tr♦♥❣ ❦❤♦↔♥❣ ♥➡♠ tr♦♥❣ ❦❤♦↔♥❣

(an , bn )

s❛♦ ❝❤♦

❦❤♦↔♥❣ ❝❤å♥ ❧✉ỉ♥ ❧✉ỉ♥ ❝❤ù❛ ♥❣❤✐➺♠ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✳ Ð ♣❤÷ì♥❣
♣❤→♣ ❝❤✐❛ ✤ỉ✐✱

xn

✤÷đ❝ ❝❤å♥ ❧➔ ✤✐➸♠ ♥➡♠ ❣✐ú❛ ❝õ❛ ❦❤♦↔♥❣

(an , bn )


✈➔

(an+1 , bn+1 ) t✐➳♣ t❤❡♦ s➩ ❧➔ ❦❤♦↔♥❣ ❝❤ù❛ ♥❣❤✐➺♠ tr♦♥❣ ✷ ❦❤♦↔♥❣
❝♦♥ (an , xn ) ❤♦➦❝ (xn , bn )✳ ◆❤÷ ✈➟②✱ ❦❤♦↔♥❣ (an , bn ) s➩ ♥❤ä ❞➛♥ tỵ✐ 0✱ ❝❤♦
❦❤♦↔♥❣

✤➳♥ ❧ó❝ t❛ ❝â t❤➳ ①❡♠ t➜t ❝↔ ❝→❝ ✤✐➸♠ ♥➡♠ tr♦♥❣ ❦❤♦↔♥❣ ❧➔ ①➜♣ ①➾ ❝õ❛
♥❣❤✐➺♠✳
❈á♥ ð ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ❣✐→ trà

xn

✤÷đ❝ ❝❤å♥ t✐➳♣ t❤❡♦ ❧↕✐ ❧➔ ❣✐❛♦

✤✐➸♠ ❝õ❛ ❞➙② ố ỗ t t ợ
trử
ữ ỵ tr ữỡ ♣❤→♣ ❝❤✐❛ ✤ỉ✐ ✤ë ❞➔✐ ❦❤♦↔♥❣ ❝♦♥
❞➛♥ tỵ✐

0✱

(an , bn ) t✐➳♥

♥❤÷♥❣ tr♦♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ ✤✐➲✉ ♥➔② ❦❤ỉ♥❣ ✤ó♥❣✳ ❈â

t❤➸ ♠ët tr♦♥❣ ❤❛✐ ❣✐→ trà

a


♥➔② s➩ ❧✉ỉ♥ ✤â♥❣ ✈❛✐ trá ❧➔
❧✉æ♥ ✤â♥❣ ✈❛✐ trá

x0 , x1 , ..., xn , ...

bn

t❤➻

an

❤♦➦❝

an

b

❤♦➦❝

✤÷đ❝ ❣✐ú ❧↕✐ s➩ ❣✐ú ♥❣✉②➯♥✳ ●✐→ trà

bn ✳

❱➼ ❞ö ♥➳✉

s➩ t❤❛② ✤ê✐ ✈➔ ❝❤➼♥❤ ❧➔

b ❣✐ú ♥❣✉②➯♥ ✈➔ ❧✉æ♥
xn−1 , n = 1, 2, ... ❉➣②


❧➔ ❞➣② ✤ì♥ ✤✐➺✉ t➠♥❣ ❤♦➦❝ ❣✐↔♠ ✈➔ ❤ë✐ tư ✤➳♥ ♥❣❤✐➺♠

✤ó♥❣✳ ❑❤ỉ♥❣ ♥❤÷ ð ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐✱ ✤✐➲✉ ❦✐➺♥ ❞ø♥❣ ð ✤➙② ❦❤æ♥❣

(an , bn ) ♠➔ ❧➔ ✤ë ❞➔✐ ❦❤♦↔♥❣ (xn , xn−1 )✳ ❚❛ s➩ ❞ø♥❣
xn ❧➔ ♥❣❤✐➺♠ ①➜♣ ①➾ ♥➳✉ |xn − xn−1 | ≤ ε ❤♦➦❝ ✭✈➔✮

❝á♥ ❧➔ ✤ë ❞➔✐ ❦❤♦↔♥❣
t❤✉➟t t♦→♥ ✈➔ ①❡♠

|f (xn )| ≤ δ ✳
❚❛ ❜✐➳t r➡♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✤÷í♥❣ t❤➥♥❣ ✤✐ q✉❛ ❤❛✐ ✤✐➸♠

A(a, f (a)), B(b, f (b))

❝â ❞↕♥❣✿

y − f (a)
x−a
=
.
f (b) − f (a)
b−a

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

✭✷✳✹✮

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



✶✾
❉➙② ❝✉♥❣

AB

❝➢t trö❝ ❤♦➔♥❤ t↕✐ ✤✐➸♠ ❝â tå❛ ✤ë

(c, 0)✱

❞♦ ✤â t❛ ❝â✿

c−a
−f (a)
=
f (b) − f (a) b − a

ứ õ s r

c=a
rữợ t t t

>0

f (a)(b a)
.
f (b) − f (a)

a0 = a, b0 = b


✭✷✳✺✮

✈➔ ❝❤♦ trữợ ởt tr

> 0



ừ ọ ũ ✤✐➲✉ ❦✐➺♥ ①➜♣ ①➾ ♥❣❤✐➺♠ ✈➔ ❞ø♥❣ q✉→ tr➻♥❤

t➼♥❤ t♦→♥✳ ụ trữợ ởt số

k

số ữợ tố

k

ữợ tt t ữ t tú t t tổ số ữợ q ợ
ữ ữủ ❦➳t q✉↔ ✈➔ ❦➳t t❤ó❝✳
❙❛✉ ✤â t❛ t❤ü❝ ❤✐➺♥ ❝→❝ ữợ s

ã

ữợ

t

x0 =


a0 f (b0 ) b0 f (a0 )
f (b0 ) − f (a0 )


❱➻

f (a0 )f (b0 ) < 0✱

❞♦ ✤â ♠ët tr♦♥❣ ❤❛✐ tr÷í♥❣ ❤đ♣ s❛✉ ✤➙② s➩ ①↔②

r❛✿
❛✳

|f (x0 )| ≤ δ ✳

❜✳

f (x0 ) = 0✳
◆➳✉

❚❛ ❝â

x0

f (a)f (x0 ) < 0

❧➔ ♥❣❤✐➺♠ ①➜♣ ①➾ ✈➔ ❦➳t t❤ó❝✳

t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣


(a, x0 )

❞♦ ✤â

t❛ ✤➦t✿

a1 = a0 , b1 = x0 .
◆➳✉

f (x0 )f (b) < 0

t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣

(x0 , b)

❞♦ ✤â t❛

✤➦t✿

a1 = x0 , b1 = b0 .
s ữợ

ã

ữợ

t

x1 =
P


a1 f (b1 ) − b1 f (a1 )
.
f (b1 ) − f (a1 )
❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✷✵
❱➻

f (a1 )f (b1 ) < 0✱

❞♦ ✤â ♠ët tr♦♥❣ ❤❛✐ tr÷í♥❣ ❤đ♣ s❛✉ ✤➙② s➩ ①↔②

r❛✿
❛✳

|x1 − x0 | ≤ ε

✈➔

|f (x1 )| ≤ δ ✳

❚❛ ❝â

x1

❧➔ ♥❣❤✐➺♠ ①➜♣ ①➾ ✈➔ ❦➳t

t❤ó❝✳

❜✳

f (x1 ) = 0✳
◆➳✉

f (a1 )f (x1 ) < 0

t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣

(a1 , x1 )

❞♦ ✤â

(x1 , b1 )

❞♦ ✤â

t❛ ✤➦t✿

a2 = a1 , b2 = x1 .
◆➳✉

f (x1 )f (b1 ) < 0

t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣

t❛ ✤➦t✿

a2 = x1 , b2 = b1 .
s ữợ


...
ã

ữợ

t

xn =


an f (bn ) − bn f (an )
.
f (bn ) − f (an )

f (an )f (bn ) < 0✱

❞♦ ✤â ♠ët tr♦♥❣ ❤❛✐ tr÷í♥❣ ❤đ♣ s❛✉ ✤➙② s➩ ①↔②

|xn − xn−1 | ≤ ε

✈➔

r❛✿
❛✳

|f (xn )| ≤ δ ✳

❚❛ ❝â


xn

❧➔ ♥❣❤✐➺♠ ①➜♣ ①➾ ✈➔ ❦➳t

t❤ó❝✳
❜✳

f (xn ) = 0✳
◆➳✉

f (an )f (xn ) < 0 t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣ (an , xn ) ❞♦ ✤â

t❛ ✤➦t✿

an+1 = an , bn+1 = xn .
◆➳✉

f (xn )f (bn ) < 0

t❤➻ ♥❣❤✐➺♠ s➩ ð tr♦♥❣ ❦❤♦↔♥❣

(xn , bn )

❞♦ ✤â

t❛ ✤➦t✿

an+1 = xn , bn+1 = bn .
◆➳✉


n>k

✭tr♦♥❣ ✤â ❦ ❧➔ số ữợ tố t tổ số

ữợ q✉→ ❧ỵ♥ ✈➔ ❦➳t t❤ó❝✳

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✷✶

❱➼ ❞ư ✷✳✷✿

❚❛ ①➨t ♣❤÷ì♥❣ tr➻♥❤✿

f (x) = sin x − x2 cos x = 0.
x=0
f (a) = −0, 6988; f (b) = 2, 5739✱

P❤÷ì♥❣ tr➻♥❤ ♥➔② ❝â ♥❣❤✐➺♠ ✤ó♥❣ ❧➔
❚❛ t❤➜② ♥➳✉

a = −0, 5; b = 2

t❤➻

tù❝


❧➔ tr→✐ ❞➜✉✳ ❱➟② t❛ ❝â t❤➸ →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣✳
✣➦t

ε = 10−3

✈➔ ♥❤í sü ❤é trđ tø ♣❤➛♥ ♠➲♠ tt ú t

t t t s ữợ t ữủ

0, 00044

ỵ tữ t ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣ r➜t ✤ì♥ ❣✐↔♥ ✈➔ ❞➵ ❤✐➸✉✳ ❚✉②
♥❤✐➯♥ ✤➸ ❦❤↔♦ s→t ♠ët ❝→❝❤ ❝❤➦t ❝❤➩ t❤➻ t❛ r ởt số
ỗ ó tr♦♥❣ ❦❤♦↔♥❣

[a, b]✳

Ð ✤➙②✱ ❝❤ó♥❣ t❛ s➩ ❦❤ỉ♥❣ ✤✐

q✉→ ✈➔♦ ❝→❝ ❝❤✐ t✐➳t ♥➔②✳
❚❛ ✈✐➳t ❧↕✐ ❝æ♥❣ t❤ù❝ ✭✷✳✺✮

c=a−
❱➻ ❦❤✐ t➼♥❤

c

t❤➻

a


✈➔

c=b−

f (a)(a − b)
f (a)(b − a)
=a−
.
f (b) − f (a)
f (a) − f (b)
b

✤➲✉ ❜➻♥❤ ✤➥♥❣ ♥➯♥

f (b)(a − b)
f (b)(b − a)
=b−
.
f (b) − f (a)
f (a) − f (b)

❇➙② ❣✐í ✤➸ ✤ì♥ ❣✐↔♥ t❛ ❝❤➾ ①➨t tr÷í♥❣ ủ

f (x)



(f (x) < 0)


(f (x) > 0) tr ✤♦↕♥ [a, b]✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔②✱ ♠ët tr♦♥❣
❤❛✐ ✤✐➸♠ a ❤♦➦❝ b s➩ ✤÷đ❝ ❝è ✤à♥❤✳ ◆➳✉ t❛ ❣å✐ ❣✐→ trà ❝è ✤à♥❤ ♥➔② ❧➔ d ✈➔
❣✐→ trà ❝á♥ ❧↕✐ ❧➔ x0 ✭tù❝ ❧➔ ♥➳✉ d = a t❤➻ x0 = b✱ ♥➳✉ d = b t❤➻ x0 = a✮
t❤➻ ❝→❝ ❣✐→ trà xn ✤÷đ❝ t➼♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝✿
❤♦➦❝ ❧ã♠

xn = xn−1 −
d

✈➔

x0

f (xn−1 )(xn−1 − d)
, n = 0, 1, 2, ...
f (xn−1 ) − f (d)

✭✷✳✻✮

✤÷đ❝ ❝❤å♥ ❝ư t❤➸ tr♦♥❣ ❝→❝ tr÷í♥❣ ❤đ♣ s❛✉✿

f (x) ❧➔ ❤➔♠ ỗ tr [a, b] tự f (x) 0 t ồ d ũ
ợ f (x) r trữớ ủ ❛✮ t❤➻ d = a✱ x0 = b ✈➔ tr♦♥❣ tr÷í♥❣
❤đ♣ ❜✮ t❤➻ d = b✱ x0 = a✳

❛✳ ◆➳✉

❜✳ ◆➳✉

f (x)


❧➔ ❤➔♠ ❧ã♠ tr➯♥

f (x)✳ ❚r♦♥❣ tr÷í♥❣
❜✮ t❤➻ d = b x0 = a

ũ ợ
trữớ ủ

[a, b]

❚➮❚ ◆●❍■➏P

f (x) ≥ 0✱ t❛ ❝ô♥❣ ❝❤å♥ d
❛✮ t❤➻ d = a✱ x0 = b ✈➔ tr♦♥❣

tù❝ ❧➔
❤ñ♣

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



t ổ ồ

d

ũ ợ

f (x)


r ữỡ ụ õ t tỹ t ữợ
s
t

x0 = a, B = b khi f (a).f ” < 0,
x0 = b, B = a khi f (a).f > 0.
t

xk+1

t ổ tự q

xk+1 = xk
ú ỵ ❧➔ ❦❤✐

f

(B − xk ).f (xk )
.
f (B) − f (xk )

✭✷✳✽✮

❦❤ỉ♥❣ ✤ê✐ ❞➜✉✱ t❤➻ ❞➣② ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ t❤❡♦ ữỡ

ỡ õ ợ s số




s ữợ

f (xk ).f (xk + s.ε)✱ tr♦♥❣ ✤â ♥➳✉ ❞➣② ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣
t➠♥❣ ✭tù❝ ❧➔ ❦❤✐ x0 = a✮ t❤➻ ❧➜② s = 1❀ ❣✐↔♠ ✭x0 = b✮ t❤➻ ❧➜② s = −1✳ ◆➳✉
f (xk ).f (xk + s.ε) < 0 t❤➻ ❝â ✤→♣ sè
t❤ù

k

✭✷✳✼✮

t❛ ①➨t ❞➜✉

x = xk ± ε.
❈❤➼♥❤ ①→❝ ❤ì♥✿

x = (xk +

❱➼ ❞ư ✷✳✸✿

ε

)± .
2
2

▲↕✐ ①➨t ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✶✮

x3 − x − 1 = 0.
(1, 2)

(1, 2) ❝â f (x) = 6x > 0, f (1) = −1✳ ❉♦ ✤â ✈ỵ✐ ♣❤÷ì♥❣
❝❤å♥ x0 = a = 1; B = b = 2; s = 1✳ ❚✐➳♣ t❤❡♦ ❧➔ t➼♥❤

❱ỵ✐ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ✤➣ ❜✐➳t ❧➔
❚r➯♥ ❦❤♦↔♥❣
♣❤→♣ ❞➙② ❝✉♥❣

t♦→♥ t❤❡♦ ❝æ♥❣ t❤ù❝ ❧➦♣ ✭✷✳✽✮✳
❙û ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ✺✳✷ ✈ỵ✐ s❛✐ số

= 104 t

s ữợ t❛ ♥❤➟♥ ✤÷đ❝ ❝→❝ ❣✐→ trà ♥❣❤✐➺♠ ①➜♣ ①➾ ♥❤÷ tr♦♥❣ ❜↔♥❣
✭✷✳✶✮

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍



ố ữợ












tr ừ ữỡ tr ✭✷✳✽✮
✶✱✶✻✻✻✼
✶✱✷✺✸✶✶
✶✱✷✾✸✹✹
✶✱✸✶✶✷✽
✶✱✸✶✽✾✾
✶✱✸✷✷✷✽
✶✱✸✷✸✻✽
✶✱✸✷✹✷✽
✶✱✸✷✹✺✸
✶✱✸✷✹✻✹

❇↔♥❣ ✷✳✶✿ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ①➜♣ ①➾ ✈ỵ✐ ε = 10−4

✷✳✷✳✷ ❙ü ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ✈➔ ✤→♥❤ ❣✐→ s❛✐ sè

❛✮ ❚➼♥❤ ❤ë✐ tö✿

❉➣② ①➜♣ ①➾ ❧✐➯♥ t✐➳♣ ❧➔ ♠ët ❞➣② t➠♥❣✱ ❜à ❝❤➦♥ tr➯♥✿

a = x0 < x1 < ... < xn < xn+1 < α < b,
ữợ

b = x0 > x1 > ... > xn > xn+1 > α > a✱
❉♦ ✤â ❤ë✐ tư ✤➳♥ ❣✐→ trà α✳
❍ì♥ ♥ú❛✱ ❝❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ tr♦♥❣ ❝ỉ♥❣ t❤ù❝✿


xn = xn−1 −

f (xn−1 )(xn−1 − d)
.
f (xn−1 ) − f (d)

t❛ ✤÷đ❝✿

α=α−

f (α)(a − d)
.
f (α) − f (d)

f (α) = 0 ❤❛② α ❝❤➼♥❤ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮
(a, b)✳

❚ø ✤➙② s✉② r❛
tr♦♥❣ ❦❤♦↔♥❣

❜✮ ✣→♥❤ ❣✐→ s❛✐ sè
f (x)
∀x ∈ (a, b).

●✐↔ sû
✈ỵ✐

❦❤ỉ♥❣ ✤ê✐ ❞➜✉ tr➯♥

(a, b)


✈➔

0 < m ≤ |f (x)| ≤ M < ∞

❚❛ ❝â ❝→❝ ❝æ♥❣ t❤ù❝ ✤→♥❤ ❣✐→ s❛✐ sè s❛✉ ✤➙②✿
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✷✹
|xn − α| ≤

❈❤ù♥❣ ♠✐♥❤✿

|f (xn )|
M −m
; |xn − α| ≤
|xn − xn−1 |.
m
m

⑩♣ ❞ö♥❣ ✣à♥❤ ❧➼ ❣✐→ trà tr✉♥❣ ❜➻♥❤ ▲❛❣r❛♥❣❡ ✭❈æ♥❣ t❤ù❝ sè ❣✐❛ ❤ú✉
❤↕♥✮✱ t❛ ❝â✿

f (xn ) − f (α) = f (c)(xn − α)(xn − α)
❱➻ f (α) = 0 ✈➔ 0 < m ≤ |f (x)| ♥➯♥

✈ỵ✐


c ∈ (xn , α) ⊂ (a, b).

|f (xn ) − f (α)| = |f (c)(xn − α)| ≥ m|xn − α|.
❙✉② r❛✿

|xn − α| ≤

|f (xn )|
.
m

◆❤÷ ✈➟②✱ ✤➸ ✤→♥❤ ❣✐→ ✤ë ❝❤➼♥❤ ①→❝ ❝õ❛ ♥❣❤✐➯♠ ♥❤➟♥ ✤÷đ❝ ❜➡♥❣ ♣❤÷ì♥❣
♣❤→♣ ❞➙② ❝✉♥❣✱ t❛ ❝â t❤➸ sû ❞ư♥❣ ❝ỉ♥❣ t❤ù❝✿

|xn − α| ≤

|f (xn )| max |f (x)|, x ∈ [a, b]

.
m
m

◆❣♦➔✐ r❛✱ ♥➳✉ ❜✐➳t ✷ ❣✐→ trà ❣➛♥ ✤ó♥❣ ❧✐➯♥ t✐➳♣✱ t❛ ❝â t❤➸ ✤→♥❤ ❣✐→ s❛✐
sè ♥❤÷ s❛✉✿
❚ø tr➯♥ ✭❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣✮ t❛ ❝â✿

xn = xn−1 −

f (xn−1 )(xn−1 − d)

, n = 0, 1, 2, ...
f (xn−1 ) − f (d)

❙✉② r❛✿

−f (xn−1 ) =
❱➻

α

f (xn−1 ) − f (d)
(xn − xn−1 ).
xn−1 − d

❧➔ ♥❣❤✐➺♠ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤

f (α) − f (xn−1 ) =

f (x) = 0

♥➯♥ t❛ ❝â t❤➸ ✈✐➳t✿

f (xn−1 ) − f (d)
(xn − xn−1 ).
xn−1 − d

⑩♣ ❞ư♥❣ ✤à♥❤ ❧➼ ❣✐ỵ✐ ❤↕♥ tr✉♥❣ ❜➻♥❤ ▲❛❣r❛♥❣❡✱ t❛ ❝â✿

f (c1 )(α − xn−1 ) = f (α) − f (xn−1 )
✈➔


❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


✷✺
f (c2 )(xn−1 − d) = f (xn−1 ) − f (d)
tr♦♥❣ ✤â✱

c1

♥➡♠ ❣✐ú❛

α

✈➔

xn−1 ✱ c2

♥➡♠ ❣✐ú❛

xn−1

✈➔

d✳

❙✉② r❛


f (c1 )(α − xn−1 ) = f (α) − f (xn−1 ) =

=

f (xn−1 ) − f (d)
(xn − xn−1 )
xn−1 − d

f (c2 )(xn−1 − d)
(xn − xn−1 ) = f (c2 )(xn − xn−1 ).
xn−1 − d

❱➟②

f (c1 )(α − xn + xn − xn−1 ) = f (c2 )(xn − xn−1 ),
❤❛②

f (c1 )(α − xn−1 ) = [f (c2 ) − f (c1 )](xn − xn−1 ),
✈➔

|α − xn | =

|f (c2 ) − f (c1 )|
|xn − xn−1 |.
|f (c1 )|

❚❤❡♦ ❣✐↔ t❤✐➳t t❛ ❝â✿

|f (c2 ) − f (c1 )| ≤ |M − m|,
❞♦ ✤â✿


|xn − α| ≤

M −m
|xn − xn−1 |.
m

◆❤÷ ✈➟②✱ t❛ ❝â ✷ ❝æ♥❣ t❤ù❝ ✤→♥❤ ❣✐→ s❛✐ sè✿

|xn − α| ≤

|f (xn )|
M −m
; |xn − α| ≤
|xn − xn−1 |.
m
m

❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P

❙❱❚❍✿ ❍❯Ý◆❍ ❚❍➚ ▼ß ❍❸◆❍


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×