✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼
❑❍❖❆ ❚❖⑩◆
−−− −−−
❑❍➶❆ ▲❯❾◆ ❚➮❚ ◆●❍■➏P
Ù◆● ❉Ư◆●
P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆
❈❍❖ P❍×❒◆● P❍⑩P ❚■➌P ❚❯❨➌◆
●✐↔♥❣ ữợ r
tỹ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
▲ỵ♣✿ ✶✶❈❚❯❉✶
✣➔ ◆➤♥❣✱ ✵✺✴✷✵✶✺
✷
▼ư❝ ❧ư❝
▲í✐ ❝↔♠ ì♥✦
✹
▲í✐ ♥â✐ ✤➛✉
✺
✶
❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
✽
✶✳✶
❈→❝ ❦❤→✐ ♥✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽
✶✳✷
Þ ♥❣❤➽❛ ❤➻♥❤ ❤å❝ ❝õ❛ ♥❣❤✐➺♠
✽
✶✳✸
❙ü tỗ t tỹ ừ ữỡ tr t
Pữỡ t t
ữợ ú ữỡ tr ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
ữợ sỡ ở
ữợ t
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✻
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✻
✷✳✷✳✶
◆ë✐ ❞✉♥❣ ♣❤÷ì♥❣ ♣❤→♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✻
✷✳✷✳✷
❙ü ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
✶✾
✷✳✷✳✸
✣→♥❤ ❣✐→ s❛✐ sè ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
✷✳✷✳✹
❱➼ ❞ư →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ◆❡✇t♦♥
P❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳
✷✷
✳
✷✸
×✉ ✤✐➸♠ ✈➔ ❤↕♥ ❝❤➳ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ✳ ✳ ✳ ✳ ✳
✷✹
✷✳✸✳✶
×✉ ✤✐➸♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✹
✷✳✸✳✷
❍↕♥ ❝❤➳
✷✺
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
Ù♥❣ ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣
t✉②➳♥
✷✻
✸✳✶
❚ê♥❣ q✉❛♥ ✈➲ ♥❣æ♥ ♥❣ú ❧➟♣ tr➻♥❤ ▼❛t❤❡♠❛t✐❝❛ ✳ ✳ ✳ ✳ ✳ ✳
✷✻
✸✳✷
P❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ tr♦♥❣ ▼❛t❤❡♠❛t✐❝❛
✷✼
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
✳ ✳ ✳ ✳ ✳ ✳ ✳
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
trú tr tt ố ợ ữỡ
t t✉②➳♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✼
▼ët sè ❜➔✐ t➟♣ →♣ ❞ö♥❣
✷✾
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❱➔✐ ♥➨t ✈➲ ■s❛❛❝ ◆❡✇t♦♥ ✈➔ ❏♦s❡♣❤ ❘❛♣❤s♦♥
✹✶
❑➳t ❧✉➟♥
✹✷
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦
✹✹
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✹
▲í✐ ❝↔♠ ì♥✦
❊♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❚❤➛② ❣✐→♦ r t
ữợ ợ t t t ữợ t➟♥ t➻♥❤
tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❡♠ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ❝õ❛ ♠➻♥❤✳ ❊♠ ①✐♥ ❣û✐ ❧í✐ ❝↔♠
ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❇❛♥ ❈❤õ ♥❤✐➺♠ ❦❤♦❛ ❚♦→♥✱ ❝ị♥❣ ❝→❝ ❚❤➛② ❈ỉ tr♦♥❣
❦❤♦❛ ❚♦→♥ ✲ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✲ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ ✤➣ t↕♦ ✤✐➲✉
❦✐➺♥✱ ❣✐ó♣ ✤ï ❡♠ ❤♦➔♥ t❤➔♥❤ tèt ▲✉➟♥ ✈➠♥ ♥➔②✳ ❈↔♠ ì♥ ❝→❝ ❜↕♥ ❝ị♥❣
❧ỵ♣ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❣✐ó♣ ✤ï ❡♠ ❤♦➔♥ t❤➔♥❤ tèt ▲✉➟♥ ✈➠♥ ♥➔②✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✺
▲í✐ ♥â✐ ✤➛✉
✶✳ ▲➼ ❞♦ ❝❤å♥ ✤➲ t➔✐
◆❤ú♥❣ ♣❤÷ì♥❣ tr➻♥❤ ①✉➜t ❤✐➺♥ tr♦♥❣ ❝→❝ ❜➔✐ t♦→♥ t❤ü❝ t➳✱ ♥â✐ ❝❤✉♥❣
❝â t❤ỉ♥❣ t✐♥ ✤➛✉ ✈➔♦ ❝❤➾ ❧➔ ❣➛♥ ✤ó♥❣✳ ❱➻ ✈➟②✱ t
ụ ổ õ ỵ tỹ t ợ r õ ợ ữỡ
✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤✱ t❛ t❤÷í♥❣ ❝â ❝ỉ♥❣ t❤ù❝ ✤→♥❤ ❣✐→ ✤ë ❝❤➼♥❤
①→❝ ❝õ❛ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ✈➔ ❝â t❤➸ t➻♠ ở t ý
trữợ ữỡ ú ữỡ tr õ ỵ rt
q trå♥❣ tr♦♥❣ ❣✐↔✐ q✉②➳t ❝→❝ ❜➔✐ t♦→♥ t❤ü❝ t➳ ♥â✐ ❝❤✉♥❣ ✈➔ ♣❤÷ì♥❣
tr➻♥❤ ♣❤✐ t✉②➳♥ ♥â✐ r✐➯♥❣✳
❚r↔✐ q✉❛ ❜➲ ❞➔② ❧à❝❤ sû ❚♦→♥ ❤å❝✱ ♥❤✐➲✉ ♣❤÷ì♥❣ ♣❤→♣ t➼♥❤ t♦→♥ ❤✐➺✉
q✉↔ ✤➣ ✤÷đ❝ ❝→❝ ♥❤➔ ❚♦→♥ ❤å❝ ①➙② ❞ü♥❣ ✤➸ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❝→❝ ♣❤÷ì♥❣
tr➻♥❤ ♣❤✐ t✉②➳♥✱ ♥❤÷ ✿ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐✱ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣✱ ♣❤÷ì♥❣
♣❤→♣ t✐➳♣ t✉②➳♥ ✭♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥❘❛♣❤s♦♥✮✱ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣
✳ ✳ ✳ ◆ê✐ ❜➟t ❧➯♥ tr số õ ữỡ t t ợ tt t♦→♥
✤ì♥ ❣✐↔♥✱ ❧↕✐ ❤ë✐ tư ✤➳♥ ♥❣❤✐➺♠ ❦❤→ ♥❤❛♥❤✳
❙ü ♣❤→t tr✐➸♥ ❝õ❛ ❝→❝ ❝ỉ♥❣ ❝ư t✐♥ ❤å❝ ✤➣ ❣✐ó♣ ❝❤♦ ữỡ
ú ởt ữợ ự ợ õ ỵ ỡ rt
ữỡ t t ❝ơ♥❣ ❦❤ỉ♥❣ ♥➡♠ ♥❣♦➔✐ ♣❤↕♠ ✈✐ ✤â✳ ❱✐➺❝ sû ❞ư♥❣
❝→❝ ♣❤➛♥ ♠➲♠ t♦→♥ ❤å❝ t➼♥❤ t♦→♥ ♥❤÷ ▼❛t❤❧❛❜✱ ▼❛♣❧❡✱ ▼❛t❤❡♠❛t✐❝❛ ✳
✳ ✳ ❝❤♦ ♣❤➨♣ ♥❣÷í✐ ❞ị♥❣ t❤ỉ♥❣ q✉❛ ❧➟♣ tr➻♥❤✱ ổ ọ q tr tỹ
ữợ ♣❤÷ì♥❣ tr➻♥❤✱ ❣✐ó♣ rót ♥❣➢♥ tè✐ ✤❛ t❤í✐ ❣✐❛♥
✈➔ t❤❛♦ t ữớ ồ ỷ ỵ t tø ❞➵ ✤➳♥ ♣❤ù❝ t↕♣✳
✣➸ ♠ð rë♥❣ ✈è♥ ❤✐➸✉ ❜✐➳t ➼t ä✐ ❝õ❛ ♠➻♥❤✱ t❤➯♠ ✈➔♦ ✤â ð ❝❤÷ì♥❣ tr➻♥❤
✣↕✐ ❤å❝✱ s✐♥❤ ✈✐➯♥ ❝❤÷❛ ❝â ✤✐➲✉ ❦✐➺♥ t✐➳♣ ❝➟♥ ♥❤✐➲✉ ✈ỵ✐ ✈✐➺❝ ✈➟♥ ❞ư♥❣
♣❤➛♥ ♠➲♠ t♦→♥ ❤å❝ ▼❛t❤❡♠❛t✐❝❛ ✲ ♠ët ♣❤➛♥ ♠➲♠ r➜t ❤❛② ✈➔ ✤❛♥❣ ✤÷đ❝
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
sỷ ử tr ồ ữợ tr➯♥ t❤➳ ❣✐ỵ✐ ✈ỵ✐ q✉② ♠ỉ ♥❣➔②
❝➔♥❣ rë♥❣ ✲ ♥➯♥ tỉ✐ ❝❤å♥ ♥❣❤✐➯♥ ❝ù✉ ✤➲ t➔✐
✑ Ù♥❣ ❞ư♥❣ ♣❤➛♥ ♠➲♠
▼❛t❤❡♠❛t✐❝❛ ❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ✑ ✳
✷✳ ▼ư❝ ✤➼❝❤ ♥❣❤✐➯♥ ự
ỗ ữỡ
ữỡ r ởt số ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à✱ tr♦♥❣ ✤â ❝â✿
❦❤→✐ ♥✐➺♠ ♣❤÷ì♥❣ tr➻♥❤ t ỵ ồ ừ sỹ tỗ
t ♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ ✈➔ ✤à♥❤ ♥❣❤➽❛
ữỡ
õ ữủ ữợ ú ởt ữỡ tr
f (x) = 0
ợ t❤✐➺✉ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥✿ ♥ë✐ ❞✉♥❣ ♣❤÷ì♥❣ ♣❤→♣✱ sü ở tử
s số ởt ử ỵ ❝â ❧✐➯♥ q✉❛♥ ✳✳✳
✰ ◆❤ú♥❣ ÷✉ ✤✐➸♠✱ ❤↕♥ ❝❤➳ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥✳
✲
❈❤÷ì♥❣ ✸✿ ❚r➻♥❤ ❜➔② ù♥❣ ❞ư♥❣ ❝õ❛ ♣❤➛♥ ♠➲♠ ❤é trđ ▼❛t❤❡♠❛t✐❝❛
❞ị♥❣ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t ỗ t số ữỡ
tr tt t ố ợ ữỡ t t t ❞ư♥❣ ✳✳✳
✸✳ ✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉
✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉ ✈➔ t➻♠ ❤✐➸✉ ❝õ❛ ▲✉➟♥ ✈➠♥ ♥➔② ❝❤➼♥❤ ❧➔ Ù♥❣ ❞ö♥❣
❝õ❛ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ✭✤➸ t➻♠ ♥❣❤✐➺♠
❣➛♥ ✤ó♥❣✮ ✳
✹✳ P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉
✲ ◆❣❤✐➯♥ ❝ù✉ ❧➼ rữợ t ồ t q ✤➳♥ ♥ë✐
❞✉♥❣ ✤➲ t➔✐✳ ❉ü❛ ✈➔♦ ❝→❝ t➔✐ ❧✐➺✉ ✤➣ õ t tờ ủ rỗ rút r
t
ọ ỵ ừ ữợ
ợ ❤↕♥ ✤➲ t➔✐
✣➲ t➔✐ ❦❤æ♥❣ ✤✐ s➙✉ ✈➔♦ ♥❣❤✐➯♥ ❝ù✉ t➜t ❝↔ ❝❤ù❝ ♥➠♥❣ t➼♥❤ t♦→♥ ❝õ❛ ♣❤➛♥
♠➲♠ ▼❛t❤❡♠❛t✐❝❛✱ ♠➔ ợ t ữỡ t t ụ ữ
ỹ ❝→❝ ❝❤÷ì♥❣ tr➻♥❤ ❝♦♥✱ t❤✉➟t t♦→♥ ❝❤♦ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
tr♦♥❣ ♠ỉ✐ tr÷í♥❣ ▼❛t❤❡♠❛t✐❝❛ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣
tr➻♥❤ ♣❤✐ t✉②➳♥✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
r ởt tớ tữỡ ố ợ ✈➲ ♠➦t ❦✐➳♥ t❤ù❝ ❝ơ♥❣
♥❤÷ ❦✐♥❤ ♥❣❤✐➺♠ t❤ü❝ t✐➵♥ ❝á♥ ❝❤÷❛ ♥❤✐➲✉✱ ♥➯♥ ❦❤ỉ♥❣ t❤➸ tr→♥❤ ❦❤ä✐
♥❤ú♥❣ t❤✐➳✉ sât✳ ❱➻ ✈➟②✱ ❡♠ r➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ sü ❝❤➾ ❜↔♦✱ ❞↕② ộ ừ
ổ sỹ õ ỵ t t ừ ❝→❝ ❜↕♥ ✤➸ ❦✐➳♥ t❤ù❝ t❤➯♠ ❤♦➔♥
❝❤➾♥❤ ✈➔ ❦❤ä✐ ❜ï ù ữợ tỹ t
t ✷✵✶✺
❙✐♥❤ ✈✐➯♥ t❤ü❝ ❤✐➺♥
◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✽
❈❤÷ì♥❣ ✶
❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
✶✳✶ ❈→❝ ❦❤→✐ ♥✐➺♠
P❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ ✭❤❛② ❝á♥ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè ❤❛② s✐➯✉
✈✐➺t✱ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ❜✐➳♥ sè t❤ü❝ ✮ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞↕♥❣✿
f (x) = 0,
tr♦♥❣ ✤â
f
✭✶✳✶✮
❧➔ ♠ët ❤➔♠ sè số s t trữợ ừ
x
ừ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ❝â t❤➸ ❧➔ sè t❤ü❝ ❤♦➦❝ sè ♣❤ù❝✱ ♥❤÷♥❣
ð ✤➙② t❛ ❝❤➾ ❦❤↔♦ s→t ❝→❝ ♥❣❤✐➺♠ t❤ü❝ ✭x
∈R
✮✳
◆❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ❧➔ sè t❤ü❝
❧➔ ❦❤✐ t❤❛② ✈➔♦
x
ð ✈➳ tr→✐ t❛ ✤÷đ❝
f (α) = 0
❦❤ỉ♥❣ ✤✐➸♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮✳
α
t❤ä❛ ♠➣♥ ✭✶✳✶✮✱ tù❝
✳ ❑❤✐ ✤â✱
α
❝á♥ ✤÷đ❝ ồ
ị ồ ừ
ỗ t❤à ❝õ❛ ❤➔♠ sè✿
y = f (x)
✭✶✳✷✮
tr♦♥❣ ❤➺ tå❛ ✤ë ✈✉æ♥❣ ❣â❝ ❖①② ✭❤➻♥❤ ✶✳✶✮✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
sỷ ỗ t t trử t ởt ✤✐➸♠ ▼ t❤➻ ✤✐➸♠ ▼ ♥➔② ❝â tå❛
✤ë
(α; 0)
✳ ❚❤❛② ✈➔♦ ✭✶✳✷✮ t❛ ✤÷đ❝✿
0 = f (α).
❱➟② ❤♦➔♥❤ ✤ë
α
❝õ❛ ❣✐❛♦ ởt ừ
rữợ ỗ t t ụ õ t ờ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✶✮ ✈➲ ❞↕♥❣ t÷ì♥❣ ✤÷ì♥❣✿
g(x) = h(x)
✭✶✳✸✮
y = g(x),
y = h(x).
rỗ ỗ t ừ số
õ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
sỷ ỗ t t t ✤✐➸♠ ▼ ❝â ❤♦➔♥❤ ✤ë
x=α
t❤➻ t❛ ❝â
g(α) = h(α).
❱➟② ❤♦➔♥❤ ở
ừ ừ ỗ t ởt
ừ tự ừ
ỹ tỗ t tỹ ừ ữỡ tr
t
rữợ t t➼♥❤ ❣➛♥ ✤ó♥❣ ♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✶✮✱ t❛ ❝➛♥ tỹ õ tỗ t ổ tr ớ t õ
t ũ ữỡ ỗ t ữ ử tr ụ õ t ũ
ỵ s❛✉✿
◆➳✉ ❤➔♠ f (x) ❧✐➯♥ tö❝ tr➯♥
✤♦↕♥ [a, b] ✈➔ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ f (a).f (b) < 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ f (x) = 0
❝â ➼t ♥❤➜t ♠ët ♥❣❤✐➺♠ tr (a, b)
ỵ ỵ
ị ồ ừ ỵ ró r ỗ t ừ ởt
số tử
y = f (x)
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
t↕✐
a≤x≤b
❧➔ ♠ët ✤÷í♥❣ ❝♦♥❣ ❧✐➯♥ tư❝ ✭❧✐➲♥
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✶✶
♥➨t✮ ♥è✐ ✷ ✤✐➸♠
❆ ✈➔ ❇✱ ❦❤✐ ❝❤✉②➸♥ tø ✤✐➸♠ ❆ ✭❛✱ ❢✭❛✮✮ s❛♥❣ ✤✐➸♠ ❇ ✭❜✱
❢✭❜✮✮ ♥➡♠ ð ❤❛✐ ♣❤➼❛ ❦❤→❝ ♥❤❛✉ ❝õ❛ trư❝ ❤♦➔♥❤✱ ✤÷í♥❣ ❝♦♥❣ ♥➔② ♣❤↔✐
❝➢t trö❝ ❤♦➔♥❤ t↕✐ ➼t ♥❤➜t ♠ët ✤✐➸♠ ✭❝â t❤➸ t↕✐ ♥❤✐➲✉ ✤✐➸♠✮✳ ✭❍➻♥❤ ✶✳✸✮✳
❍➻♥❤ ✶✳✸✿
❈❤ù♥❣ ♠✐♥❤✳
a+b
[a, b] t❤➔♥❤ ✷ ♣❤➛♥ ❜➡♥❣ ♥❤❛✉ ❜ð✐ ✤✐➸♠
✳
2
a+b
a+b
✰ ◆➳✉ f (
).f (a) > 0 t❤➻ ✤➦t a1 =
❀ b1 = b✳
2
2
a+b
a+b
✰ ◆➳✉ f (
).f (a) < 0 t❤➻ ✤➦t a1 = a❀ b1 =
✳
2
2
a1 + b 1
❈❤✐❛ [a1 , b1 ] t❤➔♥❤ ✷ ♣❤➛♥ ❜➡♥❣ ♥❤❛✉ ❜ð✐ ✤✐➸♠
✳
2
a1 + b 1
a1 + b 1
✰ ◆➳✉ f (
).f (a) > 0 t❤➻ ✤➦t a2 =
❀ b2 = b1 ✳
2
2
a1 + b 1
a1 + b1
✰ ◆➳✉ f (
).f (a) < 0 t❤➻ ✤➦t a2 = a1 ❀ b2 =
✳
2
2
❈❤✐❛ ✤♦↕♥
✳ ✳ ✳ ✳ ✳ ✳ ✳
{an }, {bn } ♠➔ {an }
✈ỵ✐ f (a)✱ f (bn ) ❝ị♥❣
❈ù t✐➳♣ tư❝ q✉→ tr➻♥❤ tr➯♥ t❛ ①➙② ❞ü♥❣ ✤÷đ❝ ✷ ❞➣②
❧➔ ❞➣② t➠♥❣✱
{bn }
❧➔ ❞➣② ❣✐↔♠✱ ✈➔
f (an )
❝ò♥❣ ❞➜✉
f (b)✳
=⇒ f (an ).f (bn ) < 0; ∀n ∈ N✳
❉➣② {an } t➠♥❣✱ ❜à ❝❤➦♥ tr➯♥ ❜ð✐ b lim an
ợ
n
{bn }
ữợ
õ tốt
a lim bn
n
tỗ t
tỗ t
▼✐♥❤ ❚r➙♠
✶✷
α = lim an ❀ β = lim bn ✳
n→∞
n→∞
=⇒ lim (bn − an ) = β − α✳
n→∞
b−a
; ∀n ∈ N✳
▼➔ bn − an =
2n
♥➯♥ lim (bn − an ) = 0 ⇒ β − α = 0 ⇒ β = α✳
n→∞
=⇒ lim bn = lim an = α = β ✳
n→∞
n→∞
=⇒ lim f (bn ) = f (α) = lim f (an )✳
✣➦t
n→∞
n→∞
=⇒ 0 ≥ f (α) ≥ 0 f () = 0
ỵ ữủ ự
∈ (a, b)✳
❈❤♦ f (x) ❧➔ ♠ët
❤➔♠ sè ①→❝ ✤à♥❤✱ ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ [a, b]✳ ❑❤✐ ✤â f (x) ❧➜② ➼t ♥❤➜t ♠ët
❧➛♥ ♠å✐ ❣✐→ trà ♥➡♠ ❣✐ú❛ f (a) ✈➔ f (b) ✳
❍➺ q✉↔ ✶✳✶✳ ✭❍➺ q✉↔ ❝õ❛ ỵ
ự
t ỵ ❣✐↔ sû
f (a) ≤ λ ≤ f (b)✱
❦❤✐ ✤â
c ∈ (a, b) s❛♦ ❝❤♦ f (c) = λ✳
❚❤➟t ✈➟②✱ ✤➦t g(x) = f (x) − λ ⇒ g ❧✐➯♥ tö❝ tr➯♥ [a, b]✳
g(a).g(b) = (f (a) − λ).(f (b) − λ) ≤ 0
✰ ◆➳✉ g(a) = 0 ❤♦➦❝ g(b) = 0 t❤➻ s✉② r❛ f (a) = λ ❤♦➦❝ f (b) = λ✳
✰ ◆➳✉ g(a) = 0 ✈➔ g(b) = 0 t s r g(a).g(b) < 0
ỵ s r tỗ t c (a, b) s❛♦ ❝❤♦
g(c) = 0✳
⇒ f (c) − λ = 0 f (c) =
tỗ t tr
q ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳
❈❤➼♥❤ ✈➻ ♥ë✐ ❞✉♥❣ ❝õ❛ ❍➺ q✉↔ ♥➔② ỵ tr ỏ t
ỵ ❣✐→ trà tr✉♥❣ ❣✐❛♥ ❝õ❛ ❤➔♠ ❧✐➯♥ tö❝
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳
(a, b)
❦❤♦↔♥❣ ♣❤➙♥ ❧✐
♥❣❤✐➺♠
✳
❑❤♦↔♥❣
♥➔♦ ✤â ✤÷đ❝ ❣å✐ ❧➔
✭❝á♥ ❣å✐ ❧➔ ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠ ❤❛② ❦❤♦↔♥❣ t→❝❤ ♥❣❤✐➺♠✮
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ♥➳✉ ♥â ❝❤ù❛
♠ët ✈➔ ❝❤➾ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣
tr➻♥❤ ✤â✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✶✸
❈❤÷ì♥❣ ✷
P❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ✤➸ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤✱ ❝❤ó♥❣ t❛ ❧✉ỉ♥ ❣✐↔
t❤✐➳t r➡♥❣
f (x)
❧➔ ♠ët ❤➔♠ ①→❝ ✤à♥❤ ✈➔ ❧✐➯♥ tö❝ tr➯♥ ♠ët ✤♦↕♥ ♥➔♦ ✤â
❝õ❛ ✤÷í♥❣ t❤➥♥❣ t❤ü❝✳ ❚❛ ❝ơ♥❣ ❣✐↔ t❤✐➳t r➡♥❣ ❝→❝ ổ tự
tỗ t ởt ❝õ❛ ✤✐➸♠
α
♣❤÷ì♥❣ tr➻♥❤✳ ❑❤♦↔♥❣ ❧➙♥ ❝➟♥ ✭❝❤ù❛
❝õ❛ ♥❣❤✐➺♠
❦❤ỉ♥❣ ❝❤ù❛ ❝→❝ ♥❣❤✐➺♠ ❦❤→❝ ❝õ❛
α
✮ ♥➔② ✤÷đ❝ ❣å✐ ❧➔
❦❤♦↔♥❣ ❝→❝❤ ❧✐
α✳
✷✳✶ ❈→❝ ữợ ú ữỡ tr
ú ữỡ tr
f (x) = 0
ữủ t t ữợ
ữợ sỡ ❜ë
❈â ✸ ♥❤✐➺♠ ✈ö✿
✲ ❱➙② ♥❣❤✐➺♠✿ ❧➔ t➻♠ ①❡♠ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❝â t❤➸ ♥➡♠
tr➯♥ ♥❤ú♥❣ ✤♦↕♥ ♥➔♦ ❝õ❛ trö❝
x✳
✲ ❚→❝❤ ♥❣❤✐➺♠✿ ❧➔ t➻♠ ❝→❝ ❦❤♦↔♥❣ ❝❤ù❛ ♥❣❤✐➺♠ s❛♦ ❝❤♦ tr♦♥❣ ♠é✐
❦❤♦↔♥❣ ❝❤➾ ❝â ✤ó♥❣ ♠ët ♥❣❤✐➺♠✳
✲ ❚❤✉ ❤➭♣ ❦❤♦↔♥❣ ❝❤ù❛ ♥❣❤✐➺♠✿ ❧➔ ❧➔♠ ❝❤♦ ❦❤♦↔♥❣ ❝❤ù❛ ♥❣❤✐➺♠
ọ tốt
ữợ sỡ ở t õ ❝❤ù❛ ♥❣❤✐➺♠ ✤õ ♥❤ä✳
✣➸ t➻♠ ❦❤♦↔♥❣ ❝❤ù❛ ♥❣❤✐➺♠✱ t❛ ❝â t❤➸ ❞ò♥❣ ♠ët tr♦♥❣ ❝→❝ t✐➯✉ ❝❤✉➞♥
s❛✉✿
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
ỵ
q ừ ỵ
sỷ f (x) ♠ët ❤➔♠ ❧✐➯♥ tư❝ ✈➔ ✤ì♥ ✤✐➺✉ ❝❤➦t tr➯♥
✤♦↕♥ [a, b]✳ ❑❤✐ ➜②✱ ♥➳✉ f (a).f (b) < 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ f (x) = 0 ❝â ❞✉②
♥❤➜t ♠ët ♥❣❤✐➺♠ tr (a, b)
ỵ
ị ồ ừ ỵ ỗ t ừ ởt số ❧✐➯♥
tư❝ t➠♥❣ ❝❤➦t ✭❣✐↔♠ ❝❤➦t✮ ❧➔ ♠ët ✤÷í♥❣ ❝♦♥❣ ❧✐➯♥ tư❝ ✭❧✐➲♥ ♥➨t✮ ❧✉ỉ♥ ✤✐
❧➯♥ ✭✤✐ ①✉è♥❣✮✳ ❑❤✐ ❞✐ ❝❤✉②➸♥ tø ✤✐➸♠
❆ ✭❛✱ ❢✭❛✮✮ s❛♥❣ ✤✐➸♠ ❇ ✭❜✱ ❢✭❜✮✮
♥➡♠ ð ừ trử t ỗ t ♣❤↔✐ ❝➢t ✈➔ ❝❤➾ ❝➢t
trö❝ ❤♦➔♥❤ ♠ët ❧➛♥✳
❈❤ù♥❣ ♠✐♥❤✳
[a, b]✱ f (x)
❚ø ❣✐↔ t❤✐➳t✱ ✈➻
f (x)
❧➔ ❧✐➯♥ tư❝ ✈➔ ✤ì♥ ✤✐➺✉ ♥➯♥ tr➯♥
t➠♥❣ ❤♦➦❝ ❣✐↔♠✳ ❍ì♥ ♥ú❛✱ tø ✤✐➲✉ ❦✐➺♥
f (a).f (b) < 0
ự
tọ út ừ ỗ t ❤➔♠ sè ♥➡♠ ✈➲ ❤❛✐ ♣❤➼❛ ❝õ❛ trư❝ ❤♦➔♥❤✳ ❑➳t
❤đ♣ ợ t ỡ ừ số s r
ừ ữỡ tr➻♥❤
f (x) = 0
✳
(a, b) ❧➔ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠
✣à♥❤ ỵ ữủ ự
ồ ỵ ỗ t
ỵ ỵ ✷✳✶ ❝❤➾ ✤á✐ ❤ä✐ t➼♥❤ ❧✐➯♥ tư❝ ♠➔ ❦❤ỉ♥❣ ✤á✐ ọ
t tỗ t ừ
f (x)
f (x)
õ ✤↕♦ ❤➔♠ t❤➻ ✤✐➲✉
❦✐➺♥ ✤ì♥ ✤✐➺✉ ❝â t❤➸ t❤❛② ❜➡♥❣ ✤✐➲✉ ❦✐➺♥ ❦❤æ♥❣ ✤ê✐ ❞➜✉ ❝õ❛ ✤↕♦ ❤➔♠✱
✈➻ ✤↕♦ ❤➔♠ ❦❤ỉ♥❣ ✤ê✐ ❞➜✉ t❤➻ ❤➔♠ sè ✤ì♥ ✤✐➺✉✳
✯ ❍➺ q✉↔ ừ ỵ
õ tốt
❚r➙♠
✶✺
●✐↔ sû ❤➔♠ sè f (x) ❝â ✤↕♦ ❤➔♠ f (x) ✈➔ ✤↕♦ ❤➔♠ f (x)
❝õ❛ ♥â ❦❤æ♥❣ ✤ê✐ ❞➜✉ ✭❧✉ỉ♥ ❞÷ì♥❣ ❤♦➦❝ ❧✉ỉ♥ ➙♠✮ tr➯♥ ✤♦↕♥ [a, b]✳ ❑❤✐
➜②✱ ♥➳✉ f (a).f (b) < 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ f (x) = 0 ❝â ❞✉② ♥❤➜t ♠ët ♥❣❤✐➺♠
tr♦♥❣ ❦❤♦↔♥❣ (a, b)
ỵ
ự
tỗ t
t ừ
ừ
f (x)✳
α
α
s❛♦ ❝❤♦
f (α) = 0
❧➔ ❤➺ q✉↔ ✶✳✶✱ ✈➔ t➼♥❤
q ừ t ỡ
ỵ ữủ ự
f (x) ổ ờ
ứ ỵ tr t❛ ✤✐ ✤➳♥ ✷ ♣❤÷ì♥❣ ♣❤→♣ t➻♠ ❦❤♦↔♥❣ ❝→❝❤ ❧✐
♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
f (x) = 0 ✭❦❤♦↔♥❣ ❝❤ù❛ ❞✉② ♥❤➜t ởt
ữỡ ồ ữỡ t
ã
Pữỡ ♣❤→♣ ❣✐↔✐ t➼❝❤✿
f (x) = 0 tr♦♥❣ ❦❤♦↔♥❣
(a, b)✳ ❚❛ ✤✐ t➼♥❤ ❣✐→ trà f (a), f (b) ✈➔ ❝→❝ ❣✐→ trà f (xi ) ❝õ❛ ❤➔♠ sè t↕✐
♠ët sè ✤✐➸♠ xi ∈ (a, b)✱ i = 1, 2, ..., n✳ ◆➳✉ ❤➔♠ f (x) ✤ì♥ ✤✐➺✉ ❝❤➦t
tr➯♥ ❦❤♦↔♥❣ (xi , xi+1 ) ✈➔ ✤✐➲✉ ❦✐➺♥ f (xi ).f (xi+1 ) < 0 ✤÷đ❝ t❤ä❛ ♠➣♥
t❤➻ (xi , xi+1 ) ❧➔ ♠ët ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ f (x) = 0✳
◆➳✉ t❤æ♥❣ t✐♥ ✈➲ ❤➔♠ f (x) q✉→ ➼t t❤➻ t❛ t❤÷í♥❣ ❞ị♥❣ q✉② tr➻♥❤ ❝❤✐❛
✤♦↕♥ t❤➥♥❣ ✭❝❤✐❛ ❦❤♦↔♥❣ (a, b) t❤➔♥❤ ✷✱ ✹✱ ✽✱ ✳✳✳ ♣❤➛♥✮ ✈➔ t❤û ✤✐➲✉ ❦✐➺♥
f (xi ).f (xi+1 ) < 0 ✤➸ t➻♠ ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠✳
▼ët ✤❛ t❤ù❝ ❜➟❝ n ❝â ❦❤ỉ♥❣ q✉→ n ♥❣❤✐➺♠✳ ❱➻ ✈➟②✱ ♣❤÷ì♥❣ tr➻♥❤ ✤❛
t❤ù❝ ❝â ❦❤æ♥❣ q✉→ n ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠✳
❑❤✐ ❤➔♠ f (x) ✤õ tèt ✭❝â ✤↕♦ ❤➔♠✱ ❝â ❞↕♥❣ ❝ö t❤➸✱ ✳✳✳✮✱ t❛ ❝â t❤➸
●✐↔ sû t❛ ♣❤↔✐ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr
st ỗ t trử số t ờ ừ
ỗ ừ số
ã
Pữỡ ồ
r trữớ ủ ỗ t số tữỡ ố t õ t
ỗ t t➻♠ ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠ ❤♦➦❝ ❣✐→ trà t❤æ ❝õ❛ ữ
ú ừ ỗ t ợ trư❝ ❤♦➔♥❤✳ ❙❛✉ ✤â✱ ♥❤í t➼♥❤ t♦→♥✱
t❛ ✏t✐♥❤ ❝❤➾♥❤✑ ✤➸ ✤✐ ✤➳♥ ❦❤♦↔♥❣ ❝→❝❤ ❧✐ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❤ì♥✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
ữợ t
ú t ②➯✉ ❝➛✉ ✤➦t r❛✳ ❈â ✹ ♣❤÷ì♥❣ ♣❤→♣ ❝ì
❜↔♥ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤ ❧➔✿
✰ P❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐✳
✰ P❤÷ì♥❣ ♣❤→♣ ❧➦♣✳
✰ P❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣✳
✰ P❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ✭❍❛② ❝á♥ ❣å✐ ❧➔ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥✱
♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ✲ s
Pữỡ t t
ở ữỡ
ị ừ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ❧➔ t➻♠ ❝→❝❤ t❤❛② ♣❤÷ì♥❣ tr
t ố ợ
ố ợ
x
ởt ữỡ tr ✤ó♥❣✱ t✉②➳♥ t➼♥❤
x✳
❚❛ t❤❛② ❝✉♥❣ ❝õ❛ ✤÷í♥❣ ❝♦♥❣
✤✐➸♠
y = f (x)
tr➯♥
[a, b]
❜➡♥❣ t✐➳♣ t✉②➳♥ t↕✐
❆ ✭❛✱ ❢✭❛✮✮ ❤♦➦❝ ✤✐➸♠ ❇ ✭❜✱ ❢✭❜✮✮ ✈➔ ❝♦✐ ❣✐❛♦ ✤✐➸♠ ❝õ❛ t✐➳♣ t✉②➳♥
✈ỵ✐ trư❝ ừ ữỡ tr
rữợ t t❛ ♥❤➢❝ ❧↕✐ ❝æ♥❣ t❤ù❝ ❚❛②❧♦r✿
❈æ♥❣ t❤ù❝ ❚❛②❧♦r✳ ❈❤♦ ❤➔♠
n+1
tr➯♥
(a, b)✳
❑❤✐ ✤â✱
f (x) ①→❝ ✤à♥❤ ✈➔ ❝â ✤↕♦ ❤➔♠ ✤➳♥
x0 , x (a, b) tỗ t c ♥➡♠ ❣✐ú❛ x0 ✈➔ x s❛♦
❝❤♦✿
x − x0
(x − x0 )2
(x − x0 )n (n)
f (x) = f (x0 )+
.f (x0 )+
.f (x0 )+...+
.f (x0 )+
1!
2!
n!
(x − x0 )n+1 (n+1)
+
.f
(c). ✭✷✳✶✮
(n + 1)!
❈ỉ♥❣ t❤ù❝ ✭✷✳✶✮ ✤÷đ❝ ❣å✐ ❧➔ ❦❤❛✐ tr✐➸♥ r
n
ừ
f (x)
ớ t ữỡ tr ợ t❤✐➳t ♥â ❝â ♥❣❤✐➺♠
♣❤➙♥ ❧✐ ð tr♦♥❣ ❦❤♦↔♥❣
x0 ✳
t❤ü❝ α
t↕✐
(a, b)✳
f ❝â ✤↕♦ ❤➔♠ f (x) = 0 t↕✐ x ∈ [a, b] ✈➔ ✤↕♦ ❤➔♠ ❝➜♣ ❤❛✐
x ∈ (a, b) ỗ tớ f (x), f (x) tử ❦❤æ♥❣ ✤ê✐ ❞➜✉
●✐↔ sû ❤➔♠
f (x) t↕✐
tr➯♥ [a, b]✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✶✼
✣à♥❤ ♥❣❤➽❛
✷✳✶✳ ✣✐➸♠
f (x).f (x) > 0
✭
x ∈ [a, b]
✣✐➲✉ ❦✐➺♥ ❋♦✉r✐❡r ✮✳
❑❤æ♥❣ ❣✐↔♠ tê♥❣ q✉→t✱ ❤➔♠
❧➔ ❝â ✤↕♦ ❤➔♠
f (x) > 0
✱ ♥➳✉
✤÷đ❝ ❣å✐ ❧➔
✤✐➸♠ ❋♦✉r✐❡r
♥➳✉
f (x) tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ❝â t❤➸ ❝♦✐
❦❤ỉ♥❣ t❛ ①➨t ♣❤÷ì♥❣ tr➻♥❤ g(x) = 0 ✈ỵ✐
g := −f ✳
❈❤å♥ ①➜♣ ①➾ ❜❛♥ ✤➛✉
❞ü♥❣ ❞➣②
x0
❧➔ ✤✐➸♠ ❋♦✉r✐❡r✿
f (x0 ).f (x0 ) > 0✳
❚❛ ①➙②
{xn }n=0,∞ ✳
❑❤❛✐ tr✐➸♥ ❚❛②❧♦r ❜➟❝ ♥❤➜t ❝õ❛
f
t↕✐
x0
❧➔
f (x) = f (x0 ) + (x − x0 ).f (x0 ) +
x ∈ [a, b]
x0 < c < x✳
✈ỵ✐
✱
c = x0 + θ.(x − x0 ) ∈ (a, b)
(x − x0 )2
.f (c)
2
ợ
0< <1
õ
ữ ữỡ tr ữủ t t❤➔♥❤✿
f (x0 ) + (x − x0 ).f (x0 ) +
●✐↔ sû r➡♥❣
x0
❣➛♥ ✈ỵ✐
x✱
(x − x0 )2
.f (c) = 0.
2
✭✷✳✷✮
t❛ ❝â t❤➸ ❜ä q✉❛ sè ❤↕♥❣ ❝✉è✐ tr♦♥❣ ✭✷✳✷✮ ✈➔
✤÷đ❝ ♣❤÷ì♥❣ tr➻♥❤✿
f (x0 ) + (x − x0 ).f (x0 ) = 0.
✭✷✳✸✮
◆❤÷ ✈➟②✱ t❛ ✤➣ t❤❛② ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ❜➡♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✮ ✤ì♥
❣✐↔♥ ❤ì♥ ♥❤✐➲✉ ✈➻ ✭✷✳✸✮ t✉②➳♥ t ố ợ
x
ữỡ t t õ ❣➛♥ ✤ó♥❣✳ ●å✐
x1
❧➔ ♥❣❤✐➺♠ ❝õ❛
✭✷✳✸✮ t❛ ❝â✿
f (x0 ) + (x1 − x0 ).f (x0 ) = 0
f (x0 )
⇔ x1 = x0 −
.
f (x0 )
f (x1 )
❚ø x1 ✱ t❛ t➼♥❤ ♠ët ❝→❝❤ t÷ì♥❣ tü r❛ x2 = x1 −
✱ ✳ ✳
f (x1 )
f (xn−1 )
xn = xn−1 −
✳
f (xn−1 )
❚ê♥❣ q✉→t✱ ❦❤✐ ✤➣ ❜✐➳t xn t❛ t➼♥❤ xn+1 t❤❡♦ ❝æ♥❣ t❤ù❝✿
xn+1 = xn −
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
f (xn )
(n ≥ 0)
f (xn )
✭✷✳✹✮
✳ ✱
✭✷✳✺✮
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
x0
ú s ởt số
[a, b]
ữợ t
ừ ữỡ tr
Pữỡ t
ú ỵ
n
ồ trữợ
xn
t ồ
xn
❣✐→ trà ❣➛♥ ✤ó♥❣ ❝õ❛
♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥
✳
✷✳✶✳ ❱➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✸✮ ❞ị♥❣ ✤➸ t❤❛② ❝❤♦ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✶✮✱ ✭✷✳✸✮ ❧➔ t✉②➳♥ t ố ợ
x
ữỡ t t õ
ữỡ t ụ ồ
ú ỵ ứ t t ữỡ t tở
ữỡ
ợ
(x) = x
ú ỵ
ỗ t
f (x)
.
f (x)
t ồ t f (x0) ❧➔ ❤➺ sè ❣â❝ ❝õ❛ t✐➳♣ t✉②➳♥ ❝õ❛
y = f (x)
t↕✐
x0
✳
❳➨t ♠ët tr÷í♥❣ ❤đ♣ ❝ư t❤➸ ♥❤÷ s❛✉✿ t ỗ t tr
õ tốt
◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
ỗ t
AB
t trử t
t ú
M
õ ❤♦➔♥❤ ✤ë ❝❤➼♥❤ ❧➔ ♥❣❤✐➺♠
t❛ t❤❛② ♠ët ❝→❝❤ ❣➛♥ ✤ó♥❣ ❝✉♥❣
AB
❜ð✐ t✐➳♣
t✉②➳♥ t↕✐ B ✱ B ❝â ❤♦➔♥❤ ✤ë x0✱ t✐➳♣ t✉②➳♥ ♥➔② ❝➢t trö❝ ❤♦➔♥❤ t↕✐ P ✱ P
❝â ❤♦➔♥❤ ✤ë x1 ✈➔ t❛ ①❡♠ x1 ❧➔ ❣✐→ trà ❣➛♥ ✤ó♥❣ ❝õ❛ α✳
✣➸ t➼♥❤
x1
t❛ ✈✐➳t ♣❤÷ì♥❣ tr➻♥❤ t✐➳♣ t✉②➳♥ t↕✐
B
✿ ✈ỵ✐
x0 = b
t❛ ❝â✿
Y − f (x0 ) = f (x0 ).(X − x0 ).
❚↕✐
P
t❛ ❝â
X = x1 , Y = 0✱
♥➯♥ ❝â✿
−f (x0 ) = f (x0 ).(x1 − x0 ).
❚ø ✤â✱ t❛ s✉② r❛ ✭✷✳✹✮✳ ❈❤♦ ♥➯♥ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ❝á♥ ❝â t➯♥ ❧➔
♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
✷✳✷✳✷
✳
❙ü ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
α✳ ✣✐➲✉ ✤â ❝❤➾ ❝â t❤➸ t❤ü❝ ❤✐➺♥
✤÷đ❝ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ♥➳✉ xn → α ❦❤✐ n → ∞✳ ❚❛ ❝â ❦➳t q✉↔
▼ö❝ ừ t t ú
s
ỵ ❦✐➺♥ ✤õ ✤➸ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ❤ë✐ tư✮✳
♥❤ú♥❣ ✤✐➲✉ ❦✐➺♥ s❛✉ ✤➙② ✤÷đ❝ t❤ä❛ ♠➣♥✿
✰ ✣✐➲✉ ❦✐➺♥ ✶✿ (a, b) ❧➔ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠
α
●✐↔ sû
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✶✮ ✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✷✵
❍➔♠ f (x) ❝â ✤↕♦ ❤➔♠ ❜➟❝ ♥❤➜t f (x) ✈➔ ❜➟❝ ❤❛✐ f (x)✱
✈ỵ✐ f (x) ✈➔ f (x) ❧✐➯♥ tư❝ tr➯♥ [a, b]✳ f ✈➔ f ❦❤ỉ♥❣ ✤ê✐ ❞➜✉ tr♦♥❣ (a, b)
✭♥❣❤➽❛ ❧➔ ❤➔♠ f (x) ✤ì♥ ✤✐➺✉✱ ỗ ó tr [a, b]
✸✿ ❳➜♣ ①➾ ✤➛✉ ✤✐➸♠ ❋♦✉r✐❡r x0 ✤÷đ❝ ❝❤å♥ ❧➔ ♠ët tr♦♥❣
❤❛✐ ✤➛✉ ♠ót a ❤♦➦❝ b ✭✈✐➺❝ ❝❤å♥ ✤✐➸♠ ❜❛♥ ✤➛✉ x0 r➜t q✉❛♥ trå♥❣ ✮ s❛♦
❝❤♦ f (x0) ❝ị♥❣ ✤ê✐ ❞➜✉ ✈ỵ✐ f (x)✱ tù❝ ❧➔ f (x0).f (x) > 0 ỗ t
ồ tr ➙♠✱ ❤➔♠ ❧ã♠ t❤➻ ❝❤å♥ ♣❤➼❛ ❣✐→ trà ❞÷ì♥❣ ✮✳
❑❤✐ ✤â✱ xn t➼♥❤ ❜ð✐ ✭✷✳✺✮ ❤ë✐ tö ✈➲ α ❦❤✐ n → ∞✳ ❈ư t❤➸ ❤ì♥ t❛ ❝â
xn ✤ì♥ ✤✐➺✉ t➠♥❣ tỵ✐ α ♥➳✉ f .f < 0 ✈➔ xn ✤ì♥ ✤✐➺✉ ❣✐↔♠ tỵ✐ α ♥➳✉
✰ ✣✐➲✉ ❦✐➺♥ ✷✿
f .f > 0
ứ ữợ t tự
ú ừ ✳
❈❤ù♥❣ ♠✐♥❤✳
n
①→❝ ✤à♥❤✱ t❛ ✤÷đ❝
xn
✈➔
①❡♠ xn ❧➔ ❣✐→ trà
f (x) > 0✳
f (x) > 0 ❤♦➔♥
◆❤÷ ✤➣ ♥â✐ ð ♠ư❝ ❬✷✳✷✳✶❪✱ t❛ ❧✉æ♥ ❝â t❤➸ ❝♦✐
❙❛✉ ✤➙②✱ t❛ ❝❤➾ ①➨t tr÷í♥❣ ❤đ♣
f (x) < 0✳
❚r÷í♥❣ ❤đ♣
t♦➔♥ t÷ì♥❣ tü✳
❑❤❛✐ tr✐➸♥ ❚❛②❧♦r ❜➟❝ ✶ ❝õ❛
f (xn )
t↕✐ ✤✐➸♠
xn−1 ✱
t❛ ❝â✿
(xn − xn−1 )2
.f (αn−1 ).
f (xn ) = f (xn−1 ) + (xn − xn−1 ).f (xn−1 ) +
2
❚ø ✭✷✳✼✮ s✉② r❛
(xn − xn−1 )2
.f (αn−1 ) ≥ 0
f (xn ) =
2
✭✷✳✼✮
✳
▼➦t ❦❤→❝✱
f (xn )
(xn − xn−1 )2 .f (αn−1 )
xn+1 − xn = −
=
≥ 0,
f (xn )
2.f (xn )
{xn } ✤ì♥
f (xn ) < f (α) = 0 ✳
❞♦ ✤â ❞➣②
✤✐➺✉ t➠♥❣✳ ◆➳✉ ❝â
xn > α
✣✐➲✉ ♥➔② ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❜➜t ✤➥♥❣ t❤ù❝
t❤➻ ❞♦
f (xn ) ≥ 0
f (x) < 0
♥➯♥
✳ ◆❤÷ ✈➟②✱
a ≤ xn ≤ xn+1 ≤ ... ≤ α b,
s r tỗ t ợ
lim xn = x
n
õ ❧↕✐✱ ❞➣② ❝→❝ ①➜♣ ①➾ ❧✐➯♥ t✐➳♣ ❧➔ ♠ët ❞➣② ✤ì♥ ✤✐➺✉ t➠♥❣ ✈➔ ❜à ❝❤➦♥
f (x).f (x) < 0 ✮ ❤♦➦❝ ✤ì♥ ✤✐➺✉ ❣✐↔♠ ✈➔ ❜à ❝❤➦♥
f (x).f (x) > 0 tỗ t ợ lim xn = x
tr trữớ ủ
trữớ ủ
õ tốt
ữợ
n
❚❤à ▼✐♥❤ ❚r➙♠
✷✶
❉➵ t❤➜② r➡♥❣
x
❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
f (x) = 0
❚❤➟t ✈➟②✱ ❝❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ tr♦♥❣ ❜✐➸✉ t❤ù❝
❝â
α
x = x−
f (x)
f (x)
✳ ❙✉② r❛
f (x) = 0
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ♥➯♥
✳ ❉♦
x=α
(a, b)
✳
xn+1 = xn −
f (xn )
f (xn )
t❛
❧➔
ồ ỵ ❤➻♥❤ ✈➩✳ ✭❍➻♥❤ ✷✳✸ ✈➔ ❍➻♥❤ ✷✳✹✮✳
❍➻♥❤ ✷✳✸✿
❍➻♥❤ ✷✳✹✿
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✷✷
✷✳✷✳✸
✣→♥❤ ❣✐→ s❛✐ sè ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥
●✐↔ sû
✤→♥❤ s số
ỵ
| xn |
0 < m ≤| f (x) |
| f (x) |≤ M ✳
❑❤✐ ➜②✱ t❛ ❝â
| f (xn ) | max{| f (xn ) |, x ∈ [a, b]}
≤
m
m
✈➔
| xn − α |≤
❈❤ù♥❣ ♠✐♥❤✳
✈➔
M
| xn xn1 |2 .
2m
ử ỵ tr tr✉♥❣ ❜➻♥❤ ▲❛❣r❛♥❣❡ ✭❝æ♥❣
t❤ù❝ sè ❣✐❛ ❤ú✉ ❤↕♥✮✱ t❛ ❝â✿
f (xn ) − f (α) = (xn − α).f (c)
✈ỵ✐
❱➻
c ∈ (xn , α) ⊂ (a, b).
f (α) = 0 ✈➔ 0 < m ≤| f (x) |
♥➯♥
| f (xn ) − f (α) |=| (xn − α).f (c) |≥ m. | xn − α | .
❙✉② r❛
| f (xn ) |
.
m
❚❛②❧♦r ❝õ❛ f (x)
| xn − α |≤
❉ò♥❣ ❦❤❛✐ tr✐➸♥
t↕✐
xn−1
✿
f (xn ) = f (xn−1 ) + (xn − xn−1 ).f (xn−1 )+
1
+ .(xn − xn−1 )2 .f (c).
2
xn ✈➔ xn−1 ✳
f (xn−1 )
xn = xn−1 −
♥➯♥
f (xn−1 )
tr♦♥❣ ✤â
❉♦
c
♥➡♠ ❣✐ú❛
f (xn−1 ) + (xn − xn−1 ).f (xn−1 ) = 0.
❚❤❛② ✈➔♦ ✤➥♥❣ t❤ù❝ tr➯♥ t❛ ✤÷đ❝✿
❚ø ❝ỉ♥❣ t❤ù❝
1
| f (xn ) |=| .(xn − xn−1 )2 .f (c) | .
2
| f (xn ) |
tr➯♥ ✈➔ ❝æ♥❣ t❤ù❝ | xn − α |≤
t❛ s✉②
m
| f (xn ) |
M
| xn − α |≤
≤
| xn − xn−1 |2 .
m
2m
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
r❛✿
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✷✸
◆❤÷ ✈➟②✱ tè❝ ✤ë ❤ë✐ tư ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ❧➔ ❜➟❝ ❤❛✐✳
P❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ❤ë✐ tư r➜t ♥❤❛♥❤ õ tữớ ữủ sỷ ử
tr ữợ t♦➔♥ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮✳
✷✳✷✳✹
❱➼ ❞ư →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ t✐➳♣ t✉②➳♥ ◆❡✇t♦♥
❱➼ ❞ư ✷✳✷✳✶✳ ❚➼♥❤
√
2
❜➡♥❣ ❝→❝❤ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ s❛✉✿
f (x) = x2 − 2 = 0.
✭✷✳✽✮
●✐↔✐✳
f (1) = −1, f (2) = 2 ⇒ f (1).f (2) < 0 ♥➯♥ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐
♥❣❤✐➺♠ ❧➔ [1, 2]✳ ◆❤÷ ✈➟②✱ ✤✐➲✉ ❦✐➺♥ ✶ ✤÷đ❝ t❤ä❛ ♠➣♥✳
f (x) = 2x > 2 ✈ỵ✐ ♠å✐ x ∈ [1, 2]✳
f (x) = 2 > 1 ✈ỵ✐ ♠å✐ x ∈ [1, 2]✳ ❱➟② ✤✐➲✉ ❦✐➺♥ ✷ ✤÷đ❝ t❤ä❛ ♠➣♥✳
❱➻ f (2) = 2 ♥➯♥ t❛ ❝❤å♥ x0 = 2✱ ♥❤÷ ✈➟② t❤➻ f (2).f (x) = 2.2 = 4 > 0
❚❛ t❤➜②
✈➔ ✤✐➲✉ ❦✐➺♥ ✸ ✤÷đ❝ t❤ä❛ ♠➣♥✳
❱➟② t❛ ❝â t❤➸ →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ◆❡✇t♦♥ ✤➸ t➼♥❤ ♥❣❤✐➺♠ ①➜♣ ①➾
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✽✮✳
❚❛ ❝â ❜↔♥❣ s❛✉✿
n
x0 = 2
n)
✈ỵ✐ xn+1 = xn − ff (x
(x )
n
0
2
1
1, 5
2
1, 417
3
1, 41421
❇↔♥❣ ✷✳✶✿
❚❛ ❝â t❤➸ ❧➜② ♥❣❤✐➺♠ ①➜♣ ①➾ ❧➔
1, 41421✳ ❚❛ ❜✐➳t r➡♥❣
√
2 = 1, 414213562...✱
♥❤÷ ✈➟② ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ◆❡✇t♦♥ ❤ë✐ tư r➜t ♥❤❛♥❤✳
❱➼ ❞ư ✷✳✷✳✷✳ ❉ị♥❣ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤
x3 − 2x − 10 = 0
[2, 3] ✳
✈ỵ✐ ✤ë ❝❤➼♥❤ ①→❝
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
10−3 ✱
❜✐➳t ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❧➔
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
✷✹
●✐↔✐✳
✣➦t
f (x) = x3 − 2x − 10✳
❑❤✐ ✤â t❛ ❝â✿
f (x) = 3x2 − 2.
f (x) = 6x.
❉➵ t❤➜② r➡♥❣
{xn }n=1,∞
f (3).f (3) > 0
♥➯♥ t❛ ❝❤å♥
x0 = 3✳
❚❛ ①➙② ❞ü♥❣ ❞➣②
♥❤÷ s❛✉✿
3
xn+1 = xn − f (xn ) = xn − xn − 2xn − 10 ,
f (xn )
3x2n 2
n 0
ợ
x0 = 3
t t ữủ
x1 = 2, 5600
f (x1 ) = 1, 6572
x2 = 2, 4662
f (x2 ) = 0, 0668
x3 = 2, 4621
|f (x3 )| = 1, 2501.10−4
❇↔♥❣ ✷✳✷✿
❈❤å♥
m = 10, M = 18
|x3 − x∗ | ≤
❦❤✐ ✤â✿
M
18
.|x3 − x2 |2 ≤ .|0, 0041|2 < 10−3 .
2m
20
❱➻ t❤➳ t❛ ❝â t❤➸ ❝❤å♥ ♥❣❤✐➺♠
x∗ ≈ x3
ì ừ ữỡ t t
ì
ã số ữỡ t õ ❤❛✐ ♥➯♥ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥
❝â tè❝ ✤ë ❤ë✐ tư ❜➟❝ ỗ tớ số ữợ ọ t ♣❤÷ì♥❣
♣❤→♣ ◆❡✇t♦♥ ❧➔♠ ✈✐➺❝ t❤➻ ♥â ❤ë✐ tư ✤➳♥ ♥❣❤✐➺♠ ỡ t ữỡ
ã
ớ sỷ ử ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ sè
f (x)
♥➯♥ ♥â✐ ❝❤✉♥❣ ♣❤÷ì♥❣
♣❤→♣ ◆❡✇t♦♥ ❤ë✐ tư ♥❤❛♥❤ ❤ì♥ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐ ✈➔ ♣❤÷ì♥❣ ♣❤→♣
❞➙② ❝✉♥❣✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠
ã
Pữỡ t s ởt ữỡ t sự ỡ
Pữỡ tỹ sỹ õ ỵ t trữợ ừ
số r trữớ ủ ổ t trữợ t ụ õ t
ử ♣❤÷ì♥❣ ♣❤→♣ ♥➔② ❜➡♥❣ ❝→❝❤ t➼♥❤ ①➜♣ ①➾ ❣✐→ trà ✤↕♦ ❤➔♠ t↕✐ tø♥❣
✤✐➸♠ ✭♠ët tr♦♥❣ ♥❤ú♥❣ ❝→❝❤ ①➜♣ ①➾ ❧➔ t➼♥❤ ❤✐➺✉
❣➛♥✑ ✈ỵ✐
x1 ✮✳
f (x2 ) − f (x1 ) ợ x2
ừ
Pữỡ t õ ỵ
t tr t
❦✐➸♠ tr❛ ✤✐➲✉ ❦✐➺♥ ✤➸ →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ♣❤ù❝ t↕♣
❤ì♥ ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐✱ ♣❤÷ì♥❣ ♣❤→♣ ❞➙② ❝✉♥❣✳ ◆❤ú♥❣ ✤✐➲✉ ❦✐➺♥ ✤➸
♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ❤ë✐ tư ❧➔ q✉❛♥ trå♥❣ ✈➔ ❝➛♥ t❤✐➳t ♣❤↔✐ ❦✐➸♠ tr❛
❦❤✐ →♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ♥➔②✳ ❈â tr÷í♥❣ ❤đ♣ ♥➳✉ →♣ ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣
♣❤→♣ ❝❤✐❛ ✤æ✐ ❤♦➦❝ ❞➙② ❝✉♥❣ t❤➻ q✉→ tr➻♥❤ ❧➦♣ s➩ ❤ë✐ tư✱ ❝á♥ ♥➳✉ t❛
→♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ◆❡✇t♦♥ ♥❤÷♥❣ ❝❤å♥ ✤✐➸♠ ①✉➜t ♣❤→t ❜❛♥ ✤➛✉
x0
❦❤ỉ♥❣ t❤➼❝❤ ❤đ♣ t❤➻ ❦❤ỉ♥❣ ✤↕t ✤÷đ❝ ❦➳t q✉↔ ♥❤÷ ♠♦♥❣ ♠✉è♥✳
❑❤â❛ ❧✉➟♥ tèt ♥❣❤✐➺♣
❙❱❚❍✿ ◆❣✉②➵♥ ❚❤à ▼✐♥❤ ❚r➙♠