✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼
✖✖✖✖✖✖✖✖✖✖✕
LÊ THỊ TRÀ LINH
Ù◆● ❉Ư◆● P❍×❒◆● P❍⑩P ❚❆▼ ❚❍Ù❈ ❇❾❈ ❍❆■
❱⑨❖ ❈⑩❈ ❇⑨■ ❚❖⑩◆ ❚❘❯◆● ❍➴❈ P❍✃ ❚❍➷◆●
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈
✣⑨ ◆➂◆● ✲ ◆❿▼ ✷✵✷✵
✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼
✖✖✖✖✖✖✖✖✖✖✕
▲➊ ❚❍➚ ❚❘⑨ ▲■◆❍
Ù◆● ❉Ư◆● P❍×❒◆● P❍⑩P ❚❆▼ ❚❍Ù❈ ❇❾❈ ❍❆■
❱⑨❖ ❈⑩❈ ❇⑨■ ❚❖⑩◆ ❚❘❯◆● ❍➴❈ P❍✃ ❚❍➷◆●
❈❤✉②➯♥ ♥❣➔♥❤✿ P❤÷ì♥❣ ♣❤→♣ t♦→♥ sì
số
ữớ ữợ ồ
ở ữợ
ở ữợ ữỡ ố
◆❿▼ ✷✵✷✵
▲❮■ ❈❆▼ ✣❖❆◆
▲✉➟♥ ✈➠♥ ♥➔② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ừ tổ ữủ tỹ ữợ
sỹ ữợ ❝õ❛ ❚❙✳ ❍♦➔♥❣ ◗✉❛♥❣ ❚✉②➳♥ ✈➔ ❚❙✳ ▲÷ì♥❣ ◗✉è❝ ❚✉②➸♥✳
❈→❝ sè ❧✐➺✉✱ ♥❤ú♥❣ ❦➳t ❧✉➟♥ ♥❣❤✐➯♥ ❝ù✉ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❧✉➟♥ ✈➠♥
♥➔② ❤♦➔♥ t♦➔♥ tr✉♥❣ t❤ü❝✳ ❚æ✐ ①✐♥ ❤♦➔♥ t♦➔♥ ❝❤à✉ tr→❝❤ ♥❤✐➺♠ ✈➲ ❧í✐ ❝❛♠
✤♦❛♥ ♥➔②✳
✣➔ ◆➤♥❣✱ ♥❣➔② ✸✵ t❤→♥❣ ✹ ♥➠♠ ✷✵✷✵
❍å❝ ✈✐➯♥
▲➯ ❚❤à ❚r➔ ▲✐♥❤
rữợ tr ở ừ ❧✉➟♥ ✈➠♥✱ tỉ✐ ①✐♥ ❜➔② tä ❧á♥❣
❜✐➳t ì♥ s➙✉ s➢❝ tợ t ữỡ ố
ữớ t t ữợ tổ õ t ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥
♥➔②✳
❚ỉ✐ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ t♦➔♥ t❤➸ ❝→❝ t❤➛② ❝ỉ ❣✐→♦
tr♦♥❣ ❦❤♦❛ ❚♦→♥✱ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣ ✤➣ ❞↕② ❜↔♦
tæ✐ t➟♥ t➻♥❤ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ t↕✐ ❦❤♦❛✳
❚ỉ✐ ❝ơ♥❣ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ ✤➳♥ tt ỗ t
t tr ợ s Pữỡ sỡ ❑✸✻ ✤➣ ❣✐ó♣
✤ï tỉ✐ t➟♥ t➻♥❤ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳
✣➔ ◆➤♥❣✱ ♥❣➔② ✸✵ t❤→♥❣ ✹ ♥➠♠ ✷✵✷✵
❍å❝ ✈✐➯♥
▲➯ ❚❤à ❚r➔ ▲✐♥❤
▼Ư❈ ▲Ư❈
▼Ð ✣❺❯
✶
✶ ❚ê♥❣ q✉❛♥ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
✹
✶✳✶
❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✷
◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺
✶✳✸
✣à♥❤ ❧➼ ❱✐➧t❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾
✶✳✹
✣à♥❤ ❧➼ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳
ỗ t ừ t t❤ù❝ ❜➟❝ ❤❛✐
✷✶
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷ ❙û ❞ư♥❣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr♦♥❣ ✈✐➺❝ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱
❜➜t ♣❤÷ì♥❣ tr➻♥❤
✷✷
✷✳✶
❉➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr➯♥ ♠ët ♠✐➲♥ ✈➔ ❜➔✐ t♦→♥ ❜✐➺♥
❧✉➟♥ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✷
✷✳✷
P❤÷ì♥❣ tr➻♥❤ ❝❤ù❛ ❞➜✉ ❣✐→ trà t✉②➺t ✤è✐
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✽
✷✳✸
P❤÷ì♥❣ tr➻♥❤ ✈ỉ t✛
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✶
✷✳✹
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❝❛♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✹
✷✳✺
P❤÷ì♥❣ tr➻♥❤ ♠ơ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ❧♦❣❛r✐t
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✶
✷✳✻
P❤÷ì♥❣ tr➻♥❤ ❧÷đ♥❣ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✻
✸ Ù♥❣ ❞ö♥❣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ tr♦♥❣ ❦❤↔♦ s→t ❤➔♠ sè
✸✳✶
❚➻♠ ♠✐➲♥ ①→❝ ✤à♥❤ ✈➔ ♠✐➲♥ ❣✐→ trà ❝õ❛ ❤➔♠ sè
✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✾
✹✾
số ỗ tr ởt ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✶
✸✳✸
❈ü❝ trà ✈➔ ❞↕♥❣ ỗ t ừ số ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✺
✸✳✹
●✐→ trà ❧ỵ♥ ♥❤➜t✱ ❣✐→ trà ♥❤ä ♥❤➜t ❝õ❛ ❤➔♠ sè ❝❤ù❛ t số
ỹ tữỡ ừ ỗ t số ợ ♠ët ✤÷í♥❣ t❤➥♥❣
✺✾
✳ ✳ ✳
❑➌❚ ▲❯❾◆
✻✼
❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖
✻✽
é
ỵ ồ t
tự ❧➔ ♠ët tr♦♥❣ ♥❤ú♥❣ ✤✐➸♠ s→♥❣ t❤ó ✈à tr♦♥❣ ❝❤÷ì♥❣
tr➻♥❤ ✣↕✐ sè ð ❜➟❝ ❚r✉♥❣ ❤å❝ P❤ê t❤æ♥❣✳ ◆â ❝â ♥❤✐➲✉ ù♥❣ ❞ư♥❣ tr♦♥❣ ✈✐➺❝
❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ❜➜t ♣❤÷ì♥❣
tr➻♥❤ ❝â ❝❤ù❛ t❤❛♠ sè✳ ❈→❝ ❞↕♥❣ t♦→♥ ♥➔② t❤÷í♥❣ ①✉②➯♥ ①✉➜t ❤✐➺♥ tr♦♥❣
❝→❝ ✤➲ t❤✐ ❤å❝ s✐♥❤ ❣✐ä✐ ❝→❝ ❝➜♣✱ ✤➲ t❤✐ ✈➔♦ ❝→❝ ❚r÷í♥❣ ✣↕✐ ❤å❝ ✈➔ ❚r✉♥❣
❤å❝ ❈❤✉②➯♥ ♥❣❤✐➺♣✳ ❚❛ t❤➜② r➡♥❣✱ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❝❤♦ ♣❤➨♣
❝❤ó♥❣ t❛ t✐➳♣ ❝➟♥ ♥❤❛♥❤ ♥❤ú♥❣ ❜➔✐ t♦→♥ ✈➲ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❜➜t ♣❤÷ì♥❣
tr➻♥❤ ❜➟❝ ❤❛✐ ♣❤ù❝ t↕♣✳
❈→❝ ❜➔✐ t♦→♥ ❦❤↔♦ s→t số t ỹ tr ỗ ♥❣❤à❝❤
❜✐➳♥ ❝õ❛ ❤➔♠ sè ❦❤æ♥❣ ❝á♥ ①❛ ❧↕ tr♦♥❣ ❝→❝ ✣➲ t❤✐ ❚✉②➸♥ s✐♥❤ ✣↕✐ ❤å❝ tø
①÷❛ ✤➳♥ ♥❛②✳ ❈→❝ ❞↕♥❣ ♥➔②✱ ♥❤í ❝ỉ♥❣ ❝ư ✤↕♦ ❤➔♠✱ t❛ ❝â t❤➸ ✤÷❛ ❝❤ó♥❣ ✈➲
❜➔✐ t♦→♥ s♦ s→♥❤ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈ỵ✐ ❝→❝ sè ✈➔ ❜➔✐ t♦→♥
❜✐➺♥ ❧✉➟♥ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳ ❘✐➯♥❣ ❜➔✐ t♦→♥ ✈➲ ①→❝ ✤à♥❤ t❤❛♠ sè
✤➸ ❤➔♠ ✤❛ t❤ù❝ ✤ì♥ ✤✐➺✉ tr➯♥ ởt trữợ ữỡ
ổ ỏ tố ÷✉ ♥ú❛ ♥➳✉ ❝❤ó♥❣ t❛ ❦❤ỉ♥❣ t❤➸ ❝ỉ ❧➟♣ t❤❛♠ sè ♠ët
❝→❝❤ ❞➵ ❞➔♥❣✳ ❉♦ ✤â✱ ❝❤ó♥❣ t❛ t❤÷í♥❣ t✐➳♥ ❤➔♥❤ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❛♠
t❤ù❝ ❜➟❝ ❤❛✐✳
❚r♦♥❣ ♥❤ú♥❣ ♥➠♠ ❣➛♥ ✤➙②✱ ❇ë ●✐→♦ ❞ö❝ ✈➔ ✣➔♦ t↕♦ ✤➣ ♥❤➟♣ ❑ý t❤✐
❚èt ♥❣❤✐➺♣ ❚r✉♥❣ ❤å❝ P❤ê t❤æ♥❣ ✈➔ ❑ý t❤✐ ✣↕✐ ồ trữợ t ởt
ý t õ ý t ❚r✉♥❣ ❤å❝ P❤ê t❤ỉ♥❣ ◗✉è❝ ❣✐❛✳ ❍ì♥ ♥ú❛✱ tr♦♥❣ ❦ý t
ổ t ữủ t ữợ tự tr ◆❤÷ ✈➟②✱ ✈✐➺❝ ❣✐↔✐ ♠ët
❜➔✐ t♦→♥ ♥❤❛♥❤ ✈➔ ❤✐➺✉ q✉↔ ❧➔ r➜t t❤✐➳t t❤ü❝ ✤è✐ ✈ỵ✐ ❝→❝ ❡♠ ❤å❝ s✐♥❤ ❜➟❝
❚r✉♥❣ ❤å❝ P❤ê t❤ỉ♥❣✳ P❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ s➩ ✤→♣ ù♥❣ ♣❤➛♥
q✉❛♥ trå♥❣ ✤è✐ ✈ỵ✐ ②➯✉ ❝➛✉ ♥➔②✳ ❚✉② ♥❤✐➯♥✱ ✤➸ ✈➟♥ ❞ư♥❣ ✤÷đ❝ ❝→❝ ❦✐➳♥ t❤ù❝
✈➲ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔♦ ❣✐↔✐ ❝→❝ ❞↕♥❣ t♦→♥ tr♦♥❣ ❝❤÷ì♥❣ tr➻♥❤ ❚r✉♥❣ ❤å❝
P❤ê t❤æ♥❣✱ ❝→❝ ❡♠ ❤å❝ s✐♥❤ ❝➛♥ ♣❤↔✐ ♥➢♠ ❝❤➢❝ ❦✐➳♥ t❤ù❝ ✈➲ t❛♠ t❤ù❝ ❜➟❝
❤❛✐✱ ♣❤↔✐ ❜✐➳t ❝→❝❤ ✈➟♥ ❞ö♥❣ ❧✐♥❤ ❤♦↕t✱ s➢❝ ❜➨♥✱ s→♥❣ t↕♦ ✈➔ ❝â ♥❤➣♥ q✉❛♥
tr♦♥❣ ✈✐➺❝ ❣✐↔✐ t♦→♥✳
✶
❚❤➜✉ ❤✐➸✉ ♥❤ú♥❣ ❦❤â ❦❤➠♥ ♥❤÷ tr➯♥✱ ❝❤ó♥❣ tỉ✐ q✉②➳t ✤à♥❤ t➻♠ ❤✐➸✉
✈➔ ✤✐ s➙✉ ♥❣❤✐➯♥ ❝ù✉ ♥❤ú♥❣ ✈➜♥ ✤➲ ♥➔② ♥❤➡♠ ♣❤ư❝ ✈ư ❝ỉ♥❣ ✈✐➺❝ ❣✐↔♥❣
❞↕② ❝õ❛ ❜↔♥ t❤➙♥✳ ◆❤í ✤â✱ ❜↔♥ t❤➙♥ ❝â ❦✐➳♥ t❤ù❝ ✈ú♥❣ ❝❤➢❝ ❤ì♥✱ ♣❤÷ì♥❣
♣❤→♣ tr✉②➲♥ t❤ư ❦✐➳♥ t❤ù❝ ✤➳♥ ❝→❝ ❡♠ ❤å❝ s✐♥❤ ♠ët ❝→❝❤ ❤✐➺✉ q✉↔ ❤ì♥
tr♦♥❣ ✈✐➺❝ ❞↕② ❤å❝✳ ❈❤➼♥❤ ✈➻ ỳ ỵ ú tổ qt ồ
❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔♦ ❝→❝ ❜➔✐ t♦→♥
❚r✉♥❣ ❤å❝ P❤ê t❤ỉ♥❣ ✑✳
t➔✐✿ ✏
✷✳ ▼ư❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉
✣➲ t➔✐ ♥❤➡♠ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ù♥❣ ❞ư♥❣ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝
❤❛✐ ✈➔♦ ❝→❝ ❜➔✐ t♦→♥ q✉❛♥ trå♥❣ ♥❤÷ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t
✤➥♥❣ t❤ù❝✱ ❦❤↔♦ s→t ❤➔♠ sè ✈➔ ❜➔✐ t♦→♥ ❤➻♥❤ ❤å❝ ❝õ❛ ❝❤÷ì♥❣ tr➻♥❤ ❚r✉♥❣
❤å❝ P❤ê t❤ỉ♥❣✳
✸✳ ✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉
❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ✤à♥❤ ỵ ừ t tự t♦→♥
✤÷đ❝ ❣✐↔✐ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳
✹✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉
✣➲ t➔✐ t➟♣ tr✉♥❣ ❝❤õ ②➳✉ ✈➔♦ ❝→❝ ❜➔✐ t♦→♥ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣
tr➻♥❤✱ ❜➜t ✤➥♥❣ t❤ù❝✱ ❜➔✐ t♦→♥ ❦❤↔♦ s→t ❤➔♠ sè ✈➔ ❜➔✐ t♦→♥ ❤➻♥❤ ❤å❝ tr
ữỡ tr r ồ Pờ tổ
Pữỡ ự
ã
t❤➟♣✱ ✤å❝✱ tr❛ ❝ù✉ s→❝❤✱ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✱ ❜→♦ ❦❤♦❛ ❤å❝✳
•
◆❣❤✐➯♥ ❝ù✉ ♠ët ❝→❝❤ ❧♦❣✐❝ ✈➔ ❤➺ t❤è♥❣ ❝→❝ t➔✐ ❧✐➺✉ t❤✉ t❤➟♣ ✤÷đ❝✳ ❙❛✉
✤â tê♥❣ ❤đ♣✱ ♣❤➙♥ t➼❝❤ tr ờ ợ t ữợ t q
❝ù✉✳
✻✳ ❈➜✉ tró❝ ❧✉➟♥ ✈➠♥
▲✉➟♥ ✈➠♥ ✤÷đ❝ ❝❤✐❛ ❧➔♠ ✸ ❝❤÷ì♥❣✿
✷
❈❤÷ì♥❣ ✶✳ ❚ê♥❣ q✉❛♥ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳ ❚r♦♥❣
❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ❝→❝ ❦✐➳♥ t❤ù❝ ✈➲ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ♥❣❤✐➺♠
❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ✤à♥❤ ❧➼ ❱✐➧t❡ ✈➔ ✤à♥❤ ❧➼ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝
❤❛✐ ♥❤➡♠ ♣❤ư❝ ✈ư ❝❤♦ ❝→❝ ❝❤÷ì♥❣ ♣❤➼❛ s❛✉✳ ◆❣♦➔✐ r❛✱ ❝❤ó♥❣ tỉ✐ ❝ơ♥❣ tr➻♥❤
❜➔② ♠ët sè ✈➼ ❞ư ♠✐♥❤ ❤å❛✳
❈❤÷ì♥❣ ✷✳ ●✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ❝❤ù❛ t❤❛♠ sè
❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳ ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐
tr➻♥❤ ❜➔② ❝→❝ ❞↕♥❣ t♦→♥ ✈➲ ✈➟♥ ❞ư♥❣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔♦ ✈✐➺❝ ❣✐↔✐ ✈➔ ❜✐➺♥
❧✉➟♥ ♣❤÷ì♥❣ tr➻♥❤✱ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ tr♦♥❣ ❦❤✉ỉ♥ ❦❤ê ❝õ❛ ❝❤÷ì♥❣ tr➻♥❤
❣✐→♦ ❞ư❝ ♣❤ê t❤ỉ♥❣✳ ❍ì♥ ♥ú❛✱ ♠é✐ ❞↕♥❣ t♦→♥ ❝❤ó♥❣ tỉ✐ ❝❤♦ ♥❤ú♥❣ ✈➼ ❞ư
❝ư t❤➸✳
❈❤÷ì♥❣ ✸✳ Ù♥❣ ❞ư♥❣ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ❣✐↔✐ ❝→❝ ❜➔✐ t♦→♥ ✈➲
❦❤↔♦ s→t ❤➔♠ sè✳ ữỡ t ữủ ự ử ừ ỵ ✤↔♦
tr♦♥❣ ♠ët sè ❜➔✐ t♦→♥ ✈➲ ❤➔♠ sè ❝❤ó♥❣ t❛ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ❜➔✐ t♦→♥ s❛✉✿
❚➻♠ ✤✐➲✉ ❦✐➺♥ ✤➸ ❤➔♠ số số ỗ tr
♥➔♦ ✤â✱ ❤➔♠ sè ❝â ❣✐→ trà ❧ỵ♥ ♥❤➜t✱ ❣✐→ tr ọ t tọ
trữợ ừ ỗ t số ợ ữớ t
ừ ỗ t ợ ữớ t ừ
ợ ữớ t
❈❤÷ì♥❣ ✶
❚ê♥❣ q✉❛♥ ✈➲ ♣❤÷ì♥❣ ♣❤→♣
t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tỉ✐ tr➻♥❤ ❜➔② ❝→❝ ❦✐➳♥ t❤ù❝ ✈➲ t❛♠ t❤ù❝ ❜➟❝
❤❛✐✱ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ✤à♥❤ ❧➼ ❱✐➧t❡ ✈➔ ✤à♥❤ ❧➼ ✈➲ ❞➜✉ ❝õ❛ t❛♠
t❤ù❝ ❜➟❝ ❤❛✐ ♥❤➡♠ ♣❤ư❝ ✈ư ❝❤♦ ❝→❝ ❝❤÷ì♥❣ ♣❤➼❛ s❛✉✳ ◆❣♦➔✐ r❛✱ ❝❤ó♥❣ tỉ✐
❝ơ♥❣ tr➻♥❤ ❜➔② ♠ët sè ✈➼ ❞ư ♠✐♥❤ ❤å❛✳ ◆ë✐ ❞✉♥❣ ❝❤÷ì♥❣ ♥➔② ✤÷đ❝ t❤❛♠
❦❤↔♦ tr♦♥❣ ❝→❝ t➔✐ ❧✐➺✉ ❬✶❪✱ ❬✹❪✱ ❬✻❪✳
✶✳✶ ❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✶✳
❚❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✤è✐ ✈ỵ✐
x
❧➔ ❜✐➸✉ t❤ù❝ ❝â ❞↕♥❣
f (x) = ax2 + bx + c✱
tr♦♥❣ ✤â
a, b, c
❧➔ ❝→❝ ❤➺ sè ✈ỵ✐
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✷✳
a = 0✳
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞↕♥❣
ax2 + bx + c = 0✱
tr♦♥❣ ✤â
x
❧➔ ➞♥ ✈➔
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✸✳
a, b, c
số ợ
a = 0
t ữỡ tr ❜➟❝ ❤❛✐ ❧➔ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ❝â ♠ët
tr♦♥❣ ❝→❝ ❞↕♥❣ s❛✉
✹
f (x) > 0,
tr♦♥❣ ✤â
f (x)
f (x) ≤ 0,
f (x) < 0,
f (x) ≥ 0,
❧➔ ♠ët t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳
✶✳✷ ◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
❳➨t ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
f (x) = ax2 + bx + c = 0.
✭✶✳✶✮
❚❛ ❝â
b
c
f (x) = 0 ⇔ x2 + x = −
a
a
b
b2
b2
c
2
⇔x +2 x+ 2 = 2 −
2a
4a
4a
a
2
2
b
b − 4ac
⇔ x+
=
.
2a
4a2
2
✣➦t ∆ = b − 4ac✱ ❦❤✐ ✤â ∆ ✤÷đ❝ ❣å✐ ❧➔ ❜✐➺t tự ừ ữỡ tr r
ã
<0
t ữỡ tr ổ
ã
=0
t ữỡ tr õ
ã
>0
t ữỡ tr ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t
√
−b + ∆
x1 =
,
2a
◆❤➟♥ ①➨t ✶✳✷✳✶✳
x=−
b
✳
2a
√
−b − ∆
x2 =
✳
2a
❚❛ ❝â
•
◆➳✉
b ❧➔ sè ❝❤➤♥✱ t❤➻ t❛ ✤➦t b = 2b ✱ ∆ = b 2 − ac✳ ❑❤✐ ✤â✱ ∆ = 4∆
√
√
−b + ∆
−b − ∆
x1 =
, x2 =
2a
2a
ã
ac < 0
t
> 0
õ ữỡ tr ❤❛✐ ❧✉ỉ♥ ❝â ❤❛✐
♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t✳
❇➔✐ t♦→♥ ✶✳✷✳✶✳ ●✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ❝❤ù❛ t❤❛♠ sè
✺
Pữỡ t trữớ ủ ừ số a
ã
a = 0✱
t❤➻ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ♥❤➜t
bx + c = 0 ⇔ x = −
•
◆➳✉
a = 0✱
c
✳
b
t❤➻ t✐➳♥ ữợ s
ữợ
ữợ t trữớ ủ ừ õ ự t số
ữợ ✸✿ ❚➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤❡♦ t❤❛♠ sè ✤â✳
❱➼ ❞ư ✶✳✷✳✶✳
●✐↔✐ ✈➔ ❜✐➺♥ ❧✉➟♥ ♣❤÷ì♥❣ tr➻♥❤ s❛✉ t❤❡♦ t❤❛♠ sè
(m − 1)x2 − 2mx + m + 2 = 0.
m
✭✶✳✷✮
▲í✐ ❣✐↔✐✳ ◆➳✉ m − 1 = 0 ⇔ m = 1✱ t❤➻ ✭✶✳✷✮ trð t❤➔♥❤
−2x + 3 = 0 ⇔ x =
◆➳✉
m − 1 = 0 ⇔ m = 1✱
3
✳
2
t❤➻ t❛ ❝â
∆ = m2 − (m − 1)(m + 2) = 2 − m.
•
◆➳✉
∆ < 0 ⇔ 2 −m < 0 ⇔ m > 2✱ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✷✮ ✈ỉ ♥❣❤✐➺♠✳
•
◆➳✉
∆ = 0 ⇔ 2 − m = 0 m = 2
x1 = x2 = 2
ã
t ữỡ tr ✭✶✳✷✮ ❝â ♥❣❤✐➺♠
∆ > 0 ⇔ 2 − m > 0 ⇔ m > 2✱
t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✷✮ ❝â ❤❛✐
♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t✳
√
m+ 2−m
x1 =
,
m−1
√
m− 2−m
x2 =
✳
m−1
✷
❇➔✐ t♦→♥ ✶✳✷✳✷✳
❇✐➺♥ ❧✉➟♥ t❤❡♦ t❤❛♠ sè ✈➲ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
f (x) = ax2 + bx + c = 0.
✻
♣
♣
❚r÷í♥❣ ❤đ♣ ✶✳ ◆➳✉ a = 0✱ t❤➻ bx + c = 0 õ
ã
b=0
c = 0
t ữỡ tr ổ
ã
b=0
c = 0
t ữỡ tr õ ổ số
ã
b = 0✱
t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♠ët ♥❣❤✐➺♠ ❞✉② ♥❤➜t
x=−
c
✳
b
❚r÷í♥❣ ❤đ♣ ✷✳ ◆➳✉ a = 0✱ t❤➻
• f (x) = 0
✈ỉ ♥❣❤✐➺♠ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
∆ < 0✳
• f (x) = 0
❝â ♥❣❤✐➺♠ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
∆ ≥ 0✳
• f (x) = 0
❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
• f (x) = 0
❝â ♥❣❤✐➺♠ ❦➨♣ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
❱➼ ❞ö ✶✳✷✳✷✳
∆ > 0✳
∆ = 0✳
❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
mx2 + (2m + 3)x + m + 5 = 0.
❚➻♠ ❝→❝ ❣✐→ trà ❝õ❛
m
✤➸ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ t❤ä❛ ♠➣♥
✶✳ ❱ỉ ♥❣❤✐➺♠❀
✷✳ ❈â ♥❣❤✐➺♠ ❦➨♣❀
✸✳ ❈â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t✳
▲í✐ ❣✐↔✐✳ ❚❛ ❝â
❚r÷í♥❣ ❤đ♣ ✶✳ ◆➳✉
m = 0✱
t❤➻ t❛ ❝â
(1.3) ⇔ 3x + 5 = 0✳
❉♦ ✤â✱ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t✳
❚r÷í♥❣ ❤đ♣ ✷✳ ◆➳✉
m = 0✱
t❤➻ t❛ ❝â
∆ = (2m + 3)2 − 4m(m + 5).
✼
✭✶✳✸✮
◆❤÷ ✈➟②✱ t❛ ❝â
(1.3)
⇔∆ <0
✈ỉ ♥❣❤✐➺♠
⇔ (2m + 3)2 − 4m(m + 5) < 0
9
⇔ −8m + 9 < 0 ⇔ m > .
8
❍ì♥ ♥ú❛✱
✭✶✳✸✮ ❝â ♥❣❤✐➺♠ ❦➨♣
⇔∆ =0⇔m=
✭✶✳✸✮ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t
9
✳
8
⇔∆ >0⇔m<
9
✳
8
❑➳t ❧✉➟♥✿
✭✶✳✸✮ ✈ỉ ♥❣❤✐➺♠
•
✭✶✳✸✮ ❝â ♥❣❤✐➺♠ ❦➨♣
•
✭✶✳✸✮ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t
❱➼ ❞ư ✶✳✷✳✸✳
⇔m>
9
❀
8
•
⇔m=
9
❀
8
⇔m=0
✈➔
m<
9
✳
8
✷
❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ♣❤÷ì♥❣ tr➻♥❤
(x + 1)(x + 3) + m(x + 2)(x + 4) = 0
❧✉ỉ♥ ❝â ♥❣❤✐➺♠ t❤ü❝ ✈ỵ✐ ♠å✐
✭✶✳✹✮
m ∈ R✳
▲í✐ ❣✐↔✐✳ ❚❛ ❝â
(1.4) ⇔ x2 + 4x + 3 + mx2 + 6mx + 8m = 0
⇔ (m + 1)x2 + 2(3m + 2)x + 8m + 3 = 0.
ã
rữớ ủ
m = 1
t ữỡ tr tr t
2x 5 = 0 x =
5
2
ã rữớ ủ ✷✳ ◆➳✉ mm = −1✱ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ (1.4) ❧➔ ♣❤÷ì♥❣ tr➻♥❤
❜➟❝ ❤❛✐ ❝â ❜✐➺t t❤ù❝
∆ = (3m + 2)2 − (m + 1)(8m + 3)
= m2 + m + 1
=
1
m+
2
2
+
✽
3
> 0.
4
❉♦ ✤â✱ ♣❤÷ì♥❣ tr➻♥❤
(1.4)
❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t✳
◆❤÷ ✈➟②✱ ♣❤÷ì♥❣ tr➻♥❤ ✤➣ ❝❤♦ ❧✉ỉ♥ ❝â ♥❣❤✐➺♠ ✈ỵ✐ ♠å✐
m ∈ R✳
✷
✶✳✸ ✣à♥❤ ❧➼ ❱✐➧t❡
◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
ax2 + bx + c = 0
❝â ♥❣❤✐➺♠✱ t❤➻ ♥❣❤✐➺♠ ❝õ❛
♣❤÷ì♥❣ tr➻♥❤ ❧✉ỉ♥ ✤÷đ❝ t ữợ
b
x2 =
2a
b +
,
x1 =
2a
õ
b + ∆ −b − ∆ −b
x1 + x2 =
+
=
;
2a
2a
a
√
√
c
−b + ∆ −b − ∆ b2 − ∆
.
=
=
.
x1 x2 =
2a
2a
4 a2
a
❉♦ ✤â✱ t❛ ❝â ✤à♥❤ ❧➼ s❛✉✳
✣à♥❤ ❧➼ ✶✳✸✳✶✳
◆➳✉ x1, x2 ❧➔ ❤❛✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
ax2 + bx + c = 0,
t❤➻ t❛ ❝â
S = x1 + x2 =
◆❤➟♥ ①➨t ✶✳✸✳✶✳
−b
,
a
◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐
ax2 + bx + c = 0
• a + b + c = 0✱
t❤➻ ữỡ tr õ
ã a b + c = 0✱
t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❧➔
❚r→✐ ❧↕✐✱ ❣✐↔ sû ❤❛✐ sè ❝â tê♥❣ ❜➥♥❣
❧➔
c
P = x1 x2 = .
a
x✱
t❤➻ sè ❦✐❛ ❧➔
S − x✳
S
t❤ä❛ ♠➣♥
c
x2 = .
a
−c
x1 = −1 ✈➔ x2 =
.
a
x1 = 1
✈➔ t➼❝❤ ❜➡♥❣
P✳
✈➔
◆➳✉ t❛ ❣å✐ ♠ët sè
❚❤❡♦ ❣✐↔ t❤✐➳t t❛ t❤✉ ✤÷đ❝ ♣❤÷ì♥❣ tr➻♥❤
x(S − x) = P ⇔ x2 − Sx + P = 0✳
✾
ữ số tr tỗ t ❧➔
S 2 − 4P ≥ 0✳
◆❤í ✤â✱ t❛ t❤✉
✤÷đ❝ ✤à♥❤ ❧➼ s❛✉✳
◆➳✉ ❤❛✐ sè ❝â tê♥❣ ❜➡♥❣ S ✈➔ ❝â t➼❝❤ ❜➡♥❣ P t❤ä❛ ♠➣♥
S 2 − 4P ≥ 0✱ t❤➻ ❤❛✐ sè ✤â ❧➔ ❤❛✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ x2 −Sx + P = 0✳
✣à♥❤ ❧➼ ✶✳✸✳✷✳
◆❤➟♥ ①➨t ✶✳✸✳✷✳
✣✐➲✉ ữỡ tr õ
ã
ữỡ
ã
♥❣❤✐➺♠ ➙♠ ❧➔
•
❍❛✐ ♥❣❤✐➺♠ tr→✐ ❞➜✉ ❧➔
❱➼ ❞ư ✶✳✸✳✶✳
∆ ≥ 0, P > 0, S > 0✳
∆ ≥ 0, P > 0, S < 0✳
P < 0✳
❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
x2 − 5x + m = 0.
✭✶✳✺✮
❑❤✐ ✤â✱
✶✳ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♠ët ♥❣❤✐➺♠ ❜➡♥❣ ✷✱ t➻♠
m
✈➔ ♥❣❤✐➺♠ ❝á♥ ❧↕✐❀
✷✳ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❤✐➺✉ ❝õ❛ ❤❛✐ ♥❣❤✐➺♠ ❜➡♥❣ ✼✱ t➻♠
m ✈➔ ❤❛✐ ♥❣❤✐➺♠
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✳
▲í✐ ❣✐↔✐✳ ✶✳ ❚❤❛② x1 = 2 ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✺✮ t❛ ❝â
4 − 10 + m = 0,
❦➨♦ t❤❡♦
m = 6✳
❚❤❡♦ ✤à♥❤ ❧➼ ❱✐➧t❡ t❤➻
x1 x2 =
❉♦ ✤â✱
x2 =
m
= m✳
1
m
= 3✳
2
x1 ✈➔ x2 ❧➔ ♥❤÷ ♥❤❛✉ ♥➯♥ t❛ ❣✐↔ sû x1 > x2 ✳ ❑❤✐ ✤â✱
x1 − x2 = 7 ✈➔ t❤❡♦ ✤à♥❤ ❧➼ ❱✐➧t❡ t❛ ❝â x1 + x2 = 5, x1 x2 = m✳
✷✳ ❇ð✐ ✈➻ ✈❛✐ trá ❝õ❛
t❤❡♦ ❜➔✐ r❛
●✐↔✐ ❤➺ ♣❤÷ì♥❣ tr➻♥❤
x1 − x2 = 7
x1 + x2 = 5
x1 x2 = m
x1 = 6
⇔ x2 = −1
m = −6.
✶✵
❉♦ ✤â
✷
x1 = 6, x2 = −1, m = −6✳
❱➼ ❞ư ✶✳✸✳✷✳
●å✐
x1 , x2
❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
(m − 1)x2 − 2mx + m − 4 = 0.
❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ❜✐➸✉ t❤ù❝
✈➔♦ ❣✐→ trà ❝õ❛
A = 3(x1 + x2 ) + 2x1 x2 − 8
✭✶✳✻✮
❦❤ỉ♥❣ ♣❤ư t❤✉ë❝
m✳
▲í✐ ❣✐↔✐✳ P❤÷ì♥❣ tr➻♥❤ ✭✶✳✻✮ ❝â ✷ ♥❣❤✐➺♠ x1, x2 ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
m−1=0
∆ ≥0
⇔
⇔
⇔
m=1
m2 − (m − 1)(m − 4) ≥ 0
m=1
5m − 4 ≥ 0
m=1
4
m≥ .
5
✭✶✳✼✮
❚❤❡♦ ✤à♥❤ ❧➼ ❱✐➧t❡ t❛ ❝â
x1 + x2 =
t❤❛② ✈➔♦
A
2m
,
m−1
x1 x2 =
m−4
✱
m−1
t❛ ❝â
A = 3(x1 + x2 ) + 2x1 x2 − 8
2m
m−4
=3
+2
−8
m−1
m−1
6m + 2m − 8 − 8(m − 1)
=
= 0.
m−1
5
❚❛ t❤➜② r➡♥❣ A = 0 ✈ỵ✐ ♠å✐ m = 1 ✈➔ m ≥ ✳ ❉♦ ✤â✱ A
4
✈➔♦ ❣✐→ trà ❝õ❛ m✳
◆❤➟♥ ①➨t ✶✳✸✳✸✳
❦❤ỉ♥❣ ♣❤ư t❤✉ë❝
✷
▲÷✉ þ ✤✐➲✉ ❦✐➺♥ ❝❤♦ t❤❛♠ sè ✤➸ ♣❤÷ì♥❣ tr➻♥❤ ✤➣ ❝❤♦ ❝â
❤❛✐ ♥❣❤✐➺♠✳ ❙❛✉ ✤â✱ ❞ü❛ ✈➔♦ ❤➺ t❤ù❝ ❱✐➧t❡ rút t số t tờ
t ớ õ ỗ ♥❤➜t ❝→❝ ✈➳ t❛ s➩ ✤÷đ❝ ♠ët ❜✐➸✉ t❤ù❝ ❝❤ù❛
♥❣❤✐➺♠ ❦❤ỉ♥❣ ♣❤ư t❤✉ë❝ ✈➔♦ t❤❛♠ sè✳
❱➼ ❞ư ✶✳✸✳✸✳
❈❤♦ ♣❤÷ì♥❣ tr➻♥❤
x2 − (2m + 1)x + m2 + 2 = 0.
❚➻♠
m
✤➸ ♣❤÷ì♥❣ tr➻♥❤ ❝â ✷ ♥❣❤✐➺♠
x1 , x2
✶✶
t❤ä❛ ♠➣♥ ❤➺ t❤ù❝
✭✶✳✽✮
3x1 x2 − 5(x1 + x2 ) + 7 = 0.
▲í✐ ❣✐↔✐✳ ✣✐➲✉ ❦✐➺♥ ✤➸ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✽✮ ❝â ✷ ♥❣❤✐➺♠ x1, x2 ❧➔
∆ ≥ 0 ⇔ (2m + 1)2 − 4(m2 + 2) ≥ 0
⇔ 4m2 + 4m + 2 − 4m2 − 8 ≥ 0
⇔ 4m − 7 ≥ 0
7
⇔m≥ .
4
✭✶✳✾✮
❚❤❡♦ ✤à♥❤ ❧➼ ❱✐➧t❡ t❛ ❝â
x1 + x2 = 2m + 1,
❍ì♥ ♥ú❛✱ tø ❣✐↔ t❤✐➳t
x1 x2 = m2 + 2✳
3x1 x2 − 5(x1 + x2 ) + 7 = 0✱
t❛ s✉② r❛
3(m2 + 2) − 5(2m + 1) + 7 = 0
⇔ 3m2 + 6 − 10m − 5 + 7 = 0
⇔ 3m2 − 10m + 8 = 0
m=2
(t❤ä❛ ♠➣♥(1.9))
4
⇔
m=
(❦❤ỉ♥❣ t❤ä❛ ♠➣♥(1.9)).
3
❱➼ ❞ư ✶✳✸✳✹✳
●å✐
x1 , x2
✷
❧➔ ❤❛✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
2x2 + 5x − 6 = 0.
✭✶✳✶✵✮
❍➣② t❤✐➳t ❧➟♣ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❝→❝ ♥❣❤✐➺♠ ❧➔
y1 =
▲í✐ ❣✐↔✐✳ ❉♦ x1, x2
1
,
x1 + 1
y2 =
1
✳
x2 + 1
❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✵✮ ♥➯♥ t❤❡♦ ✤à♥❤ ❧➼
❱✐➧t❡ t❛ ❝â
5
x1 + x2 = − ,
2
6
x1 x2 = − = −3✳
2
✶✷
1
1
+
x1 + 1 x2 + 1
x1 + x2 + 2
1
=
= .
x1 x2 + x1 + x2 + 1 9
1
1
.
P = y1 y 2 =
x1 + 1 x2 + 1
1
2
=
=− .
x1 x2 + x1 + x2 + 1
9
S = y1 + y 2 =
◆❤÷ ✈➟②✱
y1 , y2
❧➔ ❤❛✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
❉♦ ✤â✱ ♣❤÷ì♥❣ tr➻♥❤ ❝➛♥
1
2
X 2 − X − = 0.
9
9
2
❧➟♣ ❧➔ 9X − X − 2 = 0✳
✷
✶✳✹ ✣à♥❤ ❧➼ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
✣à♥❤ ❧➼ t❤✉➟♥ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
f (x) = ax2 + bx + c✱
✈ỵ✐
a = 0✱ ∆ = b2 − 4ac✳
•
◆➳✉
∆ < 0✱
t❤➻
•
◆➳✉
∆ = 0✱
t❤➻
af (x) > 0
af (x) > 0
ã
> 0
õ
ợ
ợ ồ
x=
b
2a
x R✳
❤♦➦❝
af (x) ≥ 0
t❤➻ t❛♠ t❤ù❝ ❝â ❤❛✐ ♥❣❤✐➺♠
af (x) > 0 ⇔
✈ỵ✐ ♠å✐
x1 < x2 ✳
x < x1
x > x2
af (x) < 0 ⇔ x1 < x < x2 .
❇↔♥❣ ①➨t ❞➜✉
✶✸
❚❛ ❝â
x ∈ R✳
−∞
x
x1
❝ị♥❣ ❞➜✉
∆>0
❱➼ ❞ư ✶✳✹✳✶✳
tr→✐ ❞➜✉
0
a
+∞
x2
❝ị♥❣ ❞➜✉
0
a
a
●✐↔✐ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ s❛✉
6x2 + 11x + 4 ≥ 0.
✭✶✳✶✶✮
▲í✐ ❣✐↔✐✳ ✣➦t f (x) = 6x2 + 11x + 4✱ t❛ ❝â
f (x) = 0 ⇔
❇↔♥❣ ①➨t ❞➜✉ ❝õ❛
f (x)
4
3
1
x=− .
2
♥❤÷ s❛✉
f (x)
−1
2
−4
3
−∞
x
x=−
+
−
0
0
+∞
+
◆❤÷ ✈➟②✱ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ ✤➣ ❝❤♦ ❧➔
❱➼ ❞ư ✶✳✹✳✷✳
❚➻♠
m
4 1
− ,−
3 2
✳
✷
✤➸ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ s❛✉ ❝â ♥❣❤✐➺♠
mx2 − (m + 1)x + 2m > 0.
✭✶✳✶✷✮
▲í✐ ❣✐↔✐✳ t trữớ ủ s
ã
rữớ ủ
m = 0✱
t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✷✮ trð t❤➔♥❤
−x > 0 ⇔ x < 0.
ã
rữớ ủ
m = 0
t tr ừ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✷✮ ❧➔ t❛♠
t❤ù❝ ❜➟❝ ❤❛✐ ❝â
∆ = (m + 1)2 − 4m.2m = −7m2 + 2m + 1;
∆ = 0 ⇔ −7m2 + 2m + 1 = 0 ⇔ m1,2
❚❛ ❝â ❜↔♥❣ ①➨t ❞➜✉
✶✹
√
1±2 2
=
.
7
a
−
√
1−2 2
7
|
∆
−
0
m −∞
+
√
1+2 2
7
|
+
+
0
−
0
−
0
+
|
+∞
❚ø ❜↔♥❣ ①➨t ❞➜✉ t❛ ❝â
◦
◦
◦
◦
√
1−2 2
❑❤✐ m ≤
t❛ s✉② r❛ a < 0 ✈➔ ∆ ≤ 0✱ ❦➨♦ t❤❡♦ f (x) ≤ 0 ✈ỵ✐
7
♠å✐ x ∈ R✳ ❉♦ ✤â✱ ✭✶✳✶✷✮ ✈æ ♥❣❤✐➺♠✳
√
1−2 2
❑❤✐
< m < 0 t❛ s✉② r❛ a < 0 ✈➔ ∆ > 0✱ s✉② r❛ ✭✶✳✶✷✮ ❝â t➟♣
7
♥❣❤✐➺♠ S = (x1 , x2 )✳
√
1+2 2
❑❤✐ 0 < m <
t❛ s✉② r❛ a > 0 ✈➔ ∆ > 0✳ ❉♦ ✤â✱ ✭✶✳✶✷✮ ❝â t➟♣
7
♥❣❤✐➺♠ S = (−∞, x1 ) ∪ (x2 , +∞)✳
√
1+2 2
< m < +∞ t❛ s✉② r❛ a > 0 ✈➔ ∆ ≤ 0✱ ❦➨♦ t❤❡♦ f (x) > 0
❑❤✐
7
✈ỵ✐ ♠å✐ x ∈ R✳ ❙✉② r❛ ✭✶✳✶✷✮ ❝â t➟♣ ♥❣❤✐➺♠ S = R
ữ ợ
12 2
m>
7
ú ỵ
t t ữỡ tr ✭✶✳✶✷✮ ❝â ♥❣❤✐➺♠✳
❚❛ ❝â t❤➸ ❣✐↔✐ ❜➔✐ t♦→♥ ❜➡♥❣ ❝→❝❤ t➻♠ ✤✐➲✉ ❦✐➺♥ ✤➸ ❜➜t
♣❤÷ì♥❣ tr➻♥❤ ✈ỉ ♥❣❤✐➺♠✱ tù❝ ❧➔ t➻♠ ✤✐➲✉ ❦✐➺♥ ✤➸
mx2 − (m + 1)x + 2m < 0
✈ỵ✐ ♠å✐
x ∈ R✳
✣à♥❤ ❧➼ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
•
◆➳✉
✷
af (α) < 0
t❤➻
f (x) = ax2 + bx + c
f (x)
✈➔ sè t❤ü❝
❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t
x1 < α < x2 .
✶✺
α✳
x1 , x2
❑❤✐ ✤â✱
t❤ä❛ ♠➣♥
•
◆➳✉
af (α) > 0
t❤➻
f (x)
✈æ ♥❣❤✐➺♠ ❤♦➦❝ ❝â ♥❣❤✐➺♠
x1 ≤ x2
❦❤✐
α ∈ (−∞, x1 ) ∪ (x2 , +∞)✳
❱➼ ❞ö ự ữỡ tr s ổ õ ợ ♠å✐ α ∈ R✳
f (x) = (5α4 + 3)x2 − (α8 + 6α4 − 3)x + α8 − 4α4 − 9 = 0.
✭✶✳✶✸✮
▲í✐ ❣✐↔✐✳ ❚❛ t❤➜② 5α4 + 3 > 0 ♥➯♥ ✭✶✳✶✸✮ ❧➔ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✳ ❳➨t x = 1✱
t❛ s✉② r❛ ✈ỵ✐ ♠å✐
α ∈ R✱
t❛ ❝â
f (1) = (5α4 + 3) − (α8 + 6α4 − 3) + α8 − 4α4 − 9 = −5α4 − 3 < 0✳
❙✉② r❛
af (1) = (5α4 + 3)(−5α4 − 3) = −(5α4 + 3)2 < 0✳
◆❤÷ ✈➟②✱ t❤❡♦ ✤à♥❤ ❧➼ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ t❛ s✉② r❛ ♣❤÷ì♥❣
tr➻♥❤
f (x) = 0
❧✉ỉ♥ ❝â ❤❛✐ ♥❣❤✐➺♠
◆❤➟♥ ①➨t ✶✳✹✳✶✳
x1 , x2
✈➔
x1 < 1 < x2 ✳
✷
❇➔✐ t♦→♥ ❝❤ù♥❣ ♠✐♥❤ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❤❛✐ ❝â ♥❣❤✐➺♠
t❤÷í♥❣ ✤÷đ❝ ❣✐↔✐ q✉②➳t ❜➡♥❣ ❝→❝❤ t➼♥❤
♥❤✐➯♥✱ ❦❤✐ ❝→❝ ❤➺ sè ❝õ❛
x
∆
∆ ≥ 0✳ ❚✉②
❝❤ù♥❣ ♠✐♥❤ ∆ ≥ 0
✈➔ ❝❤ù♥❣ ♠✐♥❤
♣❤ù❝ t↕♣ t❤➻ ✈✐➺❝ t➼♥❤
s ỗ õ ử ❧➼ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝
❜➟❝ ❤❛✐ ❦❤✐➳♥ ♥❤ú♥❣ ❜➔✐ t♦→♥ ♥❤÷ tr➯♥ trð ♥➯♥ ✤ì♥ ❣✐↔♥ ✈➔ ❞➵ ❞➔♥❣ ❤ì♥✳
Ð ✈➼ ❞ư tr➯♥✱ t❛ ✤➣ ①→❝ ✤à♥❤ ✤÷đ❝ ❤➺ sè ❝õ❛
x2
❞÷ì♥❣ ♥➯♥ ❝❤➾ ❝➛♥ ❝❤å♥
α s❛♦ ❝❤♦ f (α) < 0 t❤ä❛ ♠➣♥✳ ❚✉② ♥❤✐➯♥✱ ✤è✐ ✈ỵ✐ ❜➔✐ t♦→♥ ♠➔ ❤➺ sè ❝õ❛
x2 ❝❤÷❛ ①→❝ ✤à♥❤ ❞➜✉✱ t❛ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤ ♠➔ ❦❤ỉ♥❣ ♣❤ư t❤✉ë❝ ❞➜✉ ❝õ❛
2
❤➺ sè ❝õ❛ x ❜➡♥❣ ❝→❝❤ →♣ ❞ư♥❣ ❤➺ q✉↔ rót r❛ tø ✤à♥❤ ❧➼ tr➯♥ ♥❤÷ s❛✉✳
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ f (x) = ax2 + bx + c ✈➔ sè t❤ü❝ α, β
(α < β )✳ ❑❤✐ ✤â✱ f (α)f (β ) < 0 ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ f (x) ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥
❜✐➺t x1 < x2 ✈➔ ❝â ❞✉② ♥❤➜t ♠ët ♥❣❤✐➺♠ ♥➡♠ tr♦♥❣ ❦❤♦↔♥❣ (α, β )✳
❍➺ q✉↔ ✶✳✹✳✶✳
❱➼ ❞ư ✶✳✹✳✹✳
sè t❤ü❝
❈❤ù♥❣ ♠✐♥❤ r➡♥❣ ♣❤÷ì♥❣ tr➻♥❤ s❛✉ ❧✉ỉ♥ ❝â ♥❣❤✐➺♠ ✈ỵ✐ ♠å✐
α, β ✳
f (x) = 2x2 − 2(α − β )x − αβ = 0.
✶✻
✭✶✳✶✹✮
▲í✐ ❣✐↔✐✳ ❳➨t
f (α − β ) = 2(α − β )2 − 2(α − β )(α − β ) − αβ = −αβ.
f (α) = 2α2 − 2(α − β )α − αβ = αβ.
❚❛ t❤➜②
f (α − β )f (α) = −αβ.αβ = −(αβ )2 ≤ 0
◆❤÷ ✈➟②✱ ữỡ tr ổ õ ợ ồ
t ◆➳✉ f (α)f (β ) = 0✱ t❤➻ α ❤♦➦❝ β
α, β
❧➔ ❤❛✐ sè t❤ä❛ ♠➣♥
f (α)f (β ) ≤ 0✱
α, β ∈ R✳
α, β ∈ R✳
✷
✈ỵ✐ ♠å✐
❧➔ ♥❣❤✐➺♠✳ ❑❤✐ ✤â✱ ♥➳✉
t❤➻ ❝â t❤➸ ❦➳t ❧✉➟♥ ♥❣❛② r➡♥❣
f (x)
❧✉æ♥ ❝â ♥❣❤✐➺♠✳
❑❤✐ →♣ ❞ö♥❣ ✤à♥❤ ❧➼ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ✈➜♥ ✤➲ ❦❤â ❦❤➠♥
♥❤➜t ❧➔ ❝❤å♥
α
t❤➳ ♥➔♦ ❝❤♦ ♣❤ị ❤đ♣✳ ◆❤ú♥❣ ❜➔✐ t♦→♥ ♥➔② t❤÷í♥❣ ❝â t❤❛♠
sè✱ ❞♦ ✤â ❝â t❤➸ ❝❤å♥
α s❛♦ ❝❤♦ tr♦♥❣ q✉→ tr➻♥❤ t➼♥❤ f (α)✱ t❤❛♠ sè ❜à tr✐➺t
t✐➯✉ ❝➔♥❣ ♥❤✐➲✉ ❝➔♥❣ tèt✳
❙♦ s→♥❤ ♥❣❤✐➺♠
❚ø ✤à♥❤ ❧➼ ✤↔♦ ✈➲ ❞➜✉ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐✱ ❝❤ó♥❣ t❛ rót r❛ q✉② t➢❝ s♦
s→♥❤ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✈ỵ✐ ❝→❝ sè t❤ü❝ ♥❤÷ s❛✉✿
❈❤♦ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐
f (x) = ax2 + bx + c ❝â ❤❛✐ ♥❣❤✐➺♠ t❤ü❝ ❧➔ x1
✈➔
x2 ✱ S = x1 + x2 ❀ α, β ∈ R✳ ✣➸ t❤ü❝ ❤✐➺♥ s♦ s→♥❤ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝
S
❤❛✐ ợ số tỹ trữợ t t t ữủ ∆✱ af (α)✱ af (β )✱
✳
2
❙♦ s→♥❤ ♥❣❤✐➺♠ ❝õ❛ t❛♠ tự ố ợ ởt số
ã af () < 0 ⇔ x1 < α < x2 ✳
• af (α) = 0 ⇔ α
❧➔ ♥❣❤✐➺♠ ❝õ❛
f (x) = 0✳
α < x1 ≤ x2
• af (α) > 0 ⇔ α ∈
/ [x1 , x2 ] :
x1 ≤ x2 < α
❦❤✐
S
>α
2
❦❤✐
S
< α.
2
❙♦ s→♥❤ ♥❣❤✐➺♠ ❝õ❛ t❛♠ t❤ù❝ ❜➟❝ ❤❛✐ ✤è✐ ✈ỵ✐ ❤❛✐ sè
✶✼