Tải bản đầy đủ (.pdf) (366 trang)

Ocean atmosphere interactions of gases and particles

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (18.62 MB, 366 trang )

Springer Earth System Sciences

Peter S. Liss
Martin T. Johnson
Editors

Ocean-Atmosphere
Interactions of Gases
and Particles

www.dbooks.org


www.pdfgrip.com

Ocean-Atmosphere Interactions of Gases
and Particles


www.pdfgrip.com

Springer Earth System Sciences

For further volumes:
/>
www.dbooks.org


www.pdfgrip.com

Peter S. Liss • Martin T. Johnson


Editors

Ocean-Atmosphere
Interactions of Gases
and Particles


www.pdfgrip.com

Editors
Peter S. Liss
Martin T. Johnson
Centre for Ocean and Atmospheric Sciences
School of Environmental Sciences
University of East Anglia
Norwich
United Kingdom

This publication is supported by COST.

ESF provides the COST Office through an EC contract

COST is supported by the EU RTD Framework programme

ISBN 978-3-642-25642-4
ISBN 978-3-642-25643-1 (eBook)
DOI 10.1007/978-3-642-25643-1
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2013955001
# The Editor(s) (if applicable) and the Author(s) 2014. The book is published with open access at

SpringerLink.com.

Open Access This book is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for commercial use must always be obtained
from Springer. Permissions for commercial use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

www.dbooks.org


www.pdfgrip.com

Preface

This book is an outcome and an important part of the legacy of COST Action 735,
whose overall aim was to develop tools for estimating air-sea fluxes of compounds
important for climate, air quality and ocean productivity. The action was closely
allied with the SOLAS (Surface Ocean – Lower Atmosphere Study) project of the
International Geosphere-Biosphere Programme (IGBP), with both having very similar objectives. Because of this, they were mutually supportive in many ways.
The action ran for 5 years, starting in September 2006 and ending in September
2011. It involved more than 300 scientists mainly from Europe (77 % from the
following 18 countries: Belgium, Cyprus, Denmark, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Spain, Sweden,
Switzerland, Turkey and the United Kingdom) but with a significant number
from outside Europe, so that in total scientists from 30 countries participated.
One third of the participants were female. The action had a reciprocal agreement
with New Zealand. Additional information about the action can be found at
/>The action operated through two types of activity – working group meetings
(21 being held in total) and short-term scientific missions, which allowed 19 younger
scientists to work in other laboratories in the action. The work of the action was
overseen and directed by a Management Committee that met eight times.
Many scientific publications have been produced from the work supported by the
action; it has also enabled many young scientists working for their Ph.Ds. to broaden
their vision and learn techniques not available in their home laboratories. In addition
and central to the aims of the action, several important databases have been assembled and made available through public data centres. This has in general not involved
making new measurements but the gathering together and collating in a coherent
format of existing data, much of which was not readily available previously. Notable
databases made with support from the action include IRONMAP (atmospheric
aerosol iron measurements); HalOcAt (ocean and atmospheric organo-halocarbon
data); MEMENTO (marine measurements of methane and nitrous oxide); SOCAT
(global surface ocean carbon dioxide database), a comprehensive dimethyl sulphide
database, which tripled the previous readily available number of surface ocean
measurements; and finally an ongoing effort to assemble measurements of aerosol
and rain composition (trace metals and nutrients) made from ships at sea. These
various datasets will be an important legacy of the action, and we expect them to
prove vital in the future development of the subject.
v


www.pdfgrip.com
vi


Preface

Given the large amount of research supported by the action, it was decided to
produce this book to record the current state of knowledge in the area. Each of the
five chapters has several Lead Authors and a larger number of Contributing Authors,
using the IPCC authorship model. The Lead Authors together constituted the editorial board for the book. Lead authors are identified in the contacts list which follows
and by the inclusion of their email addresses at the beginning of each chapter. Each
chapter was reviewed by an external reviewer in addition to one member of the
editorial board not associated with the chapter. We have tried to have as much
consistency of nomenclature and units as possible but have not imposed this where
non-standard usage is well established and accepted. Although we have tried to keep
redundancy of material between chapters to a minimum, it has not been removed
entirely. We consider this is acceptable and even desirable since each chapter can be
downloaded independently and so needs to be complete within itself. Topics within
each chapter are dealt with in considerable detail and at a research level; so we expect
the book to be mainly of interest and constitute a fundamental text for research
workers, including graduate students.
Many people should be thanked and congratulated for the success of the action
and, consequently, for making this book possible. Firstly, thanks are due to the
participants in the scientific meetings and members of the Management Committee,
as well as the young researchers who took the opportunity to go on short-term
scientific missions. The SOLAS office at UEA carried much of the administrative
burden of the action, along with COST officers, rapporteurs and the administrative
staff.
We are grateful to the reviewers of the chapters who made many very useful and
perceptive suggestions. Rosie Cullington did a large amount of editorial work on the
reference lists for several of the chapters. Kath Mortimer put in a huge and sustained
effort at all stages of the production of the book; without her efforts it is unlikely that
the project would have been completed. Her thoroughness, excellent planning,
persuasiveness and stamina are truly remarkable. We are deeply indebted to all of

these people.
UEA, Norwich, UK
ICM-CSIC, Barcelona, Spain
UEA, Norwich, UK

Peter S. Liss
COST 735 Chair and Book Editor
Rafel Simo´
COST 735 Vice-Chair
Martin T. Johnson
Book Editor

www.dbooks.org


www.pdfgrip.com

Acknowledgments

The authors would like to acknowledge the following organisations without whose
funding this publication and the meetings which supported this work would not have
been possible:
• COST Action ES0801: The ocean chemistry of bioactive trace elements and
paleoclimate proxies; www.costaction.earth.ox.ac.uk/
• European Cooperation in Science and Technology (COST); www.cost.eu
• European Space Agency (ESA); www.esa.int
• International Geosphere-Biosphere Programme (IGBP); www.igbp.net
• Land-Ocean Interactions in the Coastal Zone (LOICZ); www.loicz.org
• Natural Environment Research Council (NERC); www.nerc.ac.uk
• Surface Ocean-Lower Atmosphere Study (SOLAS); www.solas-int.org

• University of East Anglia (UEA); www.uea.ac.uk

vii


www.pdfgrip.com

.

www.dbooks.org


www.pdfgrip.com

COST – European Cooperation in Science
and Technology

COST – European Cooperation in Science and Technology – is an intergovernmental
framework aimed at facilitating the collaboration and networking of scientists and
researchers at European level. It was established in 1971 by 19 member countries and
currently includes 35 member countries across Europe, and Israel as a cooperating state.
COST funds pan-European, bottom-up networks of scientists and researchers
across all science and technology fields. These networks, called ‘COST Actions’,
promote international coordination of nationally-funded research.
By fostering the networking of researchers at an international level, COST enables
break-through scientific developments leading to new concepts and products, thereby
contributing to strengthening Europe’s research and innovation capacities.
COST’s mission focuses in particular on:
• Building capacity by connecting high-quality scientific communities throughout
Europe and worldwide;

• Providing networking opportunities for early career investigators;
• Increasing the impact of research on policy makers, regulatory bodies and
national decision makers as well as the private sector.
Through its inclusiveness, COST supports the integration of research
communities, leverages national research investments and addresses issues of global
relevance.
Every year thousands of European scientists benefit from being involved in COST
Actions, allowing the pooling of national research funding to achieve common goals.
As a precursor of advanced multidisciplinary research, COST anticipates and
complements the activities of EU Framework Programmes, constituting a “bridge”
towards the scientific communities of emerging countries. In particular, COST
Actions are also open to participation by non-European scientists coming from
neighbour countries (for example Albania, Algeria, Armenia, Azerbaijan, Belarus,
Egypt, Georgia, Jordan, Lebanon, Libya, Moldova, Montenegro, Morocco, the
Palestinian Authority, Russia, Syria, Tunisia and Ukraine) and from a number of
international partner countries.
COST’s budget for networking activities has traditionally been provided by
successive EU RTD Framework Programmes. COST is currently executed by the
European Science Foundation (ESF) through the COST Office on a mandate by the
European Commission, and the framework is governed by a Committee of Senior
Officials (CSO) representing all its 35 member countries.
More information about COST is available at www.cost.eu.
ix


www.pdfgrip.com

.

www.dbooks.org



www.pdfgrip.com

Contents

1

Short-Lived Trace Gases in the Surface Ocean and the Atmosphere . . .
Peter S. Liss, Christa A. Marandino, Elizabeth E. Dahl, Detlev Helmig,
Eric J. Hintsa, Claire Hughes, Martin T. Johnson, Robert M. Moore,
John M.C. Plane, Birgit Quack, Hanwant B. Singh, Jacqueline Stefels,
Roland von Glasow, and Jonathan Williams
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Sulphur and Related Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1 DMS(P) in the Surface Ocean . . . . . . . . . . . . . . . . . . . . . .
1.2.1.1 Ecosystem Dynamics . . . . . . . . . . . . . . . . . . . . .
1.2.1.2 DMS Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.1.3 Predicted Impact of Climate Change . . . . . . . . . .
1.2.2 Other Sulphur and Related Gases in the Surface Ocean . . .
1.2.2.1 Carbonyl Sulphide . . . . . . . . . . . . . . . . . . . . . . .
1.2.2.2 Carbon Disulphide . . . . . . . . . . . . . . . . . . . . . . .
1.2.2.3 Hydrogen Sulphide . . . . . . . . . . . . . . . . . . . . . . .
1.2.2.4 Methanethiol . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.2.5 Dimethyl Selenide . . . . . . . . . . . . . . . . . . . . . . .
1.2.3 Atmospheric Sulphur and Related Gases . . . . . . . . . . . . . .
1.2.3.1 Chemistry of Sulphur in the Marine Boundary
Layer (MBL) . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.3.2 CLAW Hypothesis . . . . . . . . . . . . . . . . . . . . . . .
1.3 Halocarbon Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3.1 Chlorinated Compounds . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1.2 Methyl Chloride . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1.3 Dichloromethane . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1.4 Tri- and Tetrachloroethylene . . . . . . . . . . . . . . . .
1.3.1.5 Chloroform . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2 Brominated Compounds . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2.1 Methyl Bromide . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2.2 CHBr3, CH2Br2 and Other Polybrominated
Methanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3 Iodinated Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3.1 Iodomethane . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.3.2 Other Mono-Iodinated Iodocarbons . . . . . . . . . . .
1.3.3.3 Di- and Tri-Halogenated Compounds . . . . . . . . .
1.3.4 Halogens in the Marine Atmospheric Boundary Layer . . . .

1

1
2
2
2
3
3
6
6
6
6
7
7

7
9
11
13
14
14
15
15
16
16
16
16
17
19
19
20
20
21

xi


www.pdfgrip.com
xii

Contents

1.4

2


Non-Methane Hydrocarbons (NMHCs) . . . . . . . . . . . . . . . . . . . .
1.4.1 Oxygenated Volatile Organic Compounds (OVOCs) . . . . .
1.4.1.1 Atmospheric Importance of OVOCs . . . . . . . . . .
1.4.1.2 Atmospheric Budget . . . . . . . . . . . . . . . . . . . . . .
1.4.1.3 Surface Ocean Processes . . . . . . . . . . . . . . . . . .
1.4.2 Alkanes and Alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.3 Alkyl Nitrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.4 Hydrogen Cyanide (HCN) and Methyl Cyanide (CH3CN) . . . .
1.5 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Nitric Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Ammonia and Amines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.1 Ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.2 Amines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9 Carbon Monoxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26
26
26
27
29
31
31
33
33
35
35

35
37
37
38
39
40

Transfer Across the Air-Sea Interface . . . . . . . . . . . . . . . . . . . . . . . .
Christoph S. Garbe, Anna Rutgersson, Jacqueline Boutin, Gerrit de Leeuw,
Bruno Delille, Christopher W. Fairall, Nicolas Gruber, Jeffrey Hare,
David T. Ho, Martin T. Johnson, Philip D. Nightingale, Heidi Pettersson,
Jacek Piskozub, Erik Sahle´e, Wu-ting Tsai, Brian Ward, David K. Woolf,
and Christopher J. Zappa
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Microscale Wave Breaking . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Small Scale Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Bubbles, Sea Spray . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Wind-Generated Waves . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Large-Scale Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.6 Rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.7 Surface Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.8 Biological and Chemical Enhancement . . . . . . . . . . . . . . .
2.2.9 Atmospheric Processes . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Interfacial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1.1 Thin (Stagnant) Film Model . . . . . . . . . . . . . . . .
2.3.1.2 Surface Renewal Model . . . . . . . . . . . . . . . . . . .
2.3.1.3 Eddy Renewal Model . . . . . . . . . . . . . . . . . . . . .
2.3.1.4 Surface Penetration . . . . . . . . . . . . . . . . . . . . . .

2.3.1.5 Air-Side Transfer . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Direct Numerical Simulations (DNS) and Large
Eddy Simulations (LES) . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Exchanged Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2 Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55

55
56
56
60
61
65
66
67
68
69
70
72
72
72
73
73
73
74
74
76
76

76

www.dbooks.org


www.pdfgrip.com
Contents

xiii

2.4.3

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3.1 Dry Deposition . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3.2 Wet Deposition . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Small-Scale Measurements Techniques . . . . . . . . . . . . . .
2.5.1.1 Particle-Based Techniques . . . . . . . . . . . . . . . .
2.5.1.2 Thermographic Techniques . . . . . . . . . . . . . . . .
2.5.2 Micrometeorological Techniques . . . . . . . . . . . . . . . . . .
2.5.3 Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3.2 Scales (Spatial and Temporal) . . . . . . . . . . . . . .
2.5.3.3 Accuracy and Limitations . . . . . . . . . . . . . . . . .
2.5.3.4 Current and Recent Field Studies . . . . . . . . . . .
2.5.4 Profiles of pCO2 Near the Surface . . . . . . . . . . . . . . . . . .
2.5.5 Method Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Parameterization of Gas Exchange . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Wind Speed Relationships . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 Surface Roughness, Slope . . . . . . . . . . . . . . . . . . . . . . .

2.6.3 NOAA-COARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.4 Energy Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.5 Evaluating and Selecting Transfer Velocity
Parameterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Sea Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Applications of Air-Sea Gas Transfer . . . . . . . . . . . . . . . . . . . . .
2.8.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.2 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.3 Inventories, Climatologies Using In Situ Data . . . . . . . . .
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3

Air-Sea Interactions of Natural Long-Lived Greenhouse
Gases (CO2, N2O, CH4) in a Changing Climate . . . . . . . . . . . . . . . .
Dorothee C.E. Bakker, Hermann W. Bange, Nicolas Gruber,
Truls Johannessen, Rob C. Upstill-Goddard, Alberto V. Borges,
Bruno Delille, Carolin R. Loăscher, S. Wajih A. Naqvi,
Abdirahman M. Omar, and J. Magdalena Santana-Casiano
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Atmospheric Greenhouse Gases from Ice Cores . . . . . . . . .
3.2 Surface Ocean Distribution and Air-Sea Exchange of CO2 . . . . . .
3.2.1 Global Tropospheric CO2 Budget . . . . . . . . . . . . . . . . . . .
3.2.2 Processes Controlling CO2 Dynamics in the Upper
Water Column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Surface Ocean fCO2 and Air-Sea CO2 Fluxes in the
Open Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3.1 Surface Ocean fCO2 Distribution . . . . . . . . . . . .
3.2.3.2 Multi-Year Changes and Trends . . . . . . . . . . . . .
3.2.3.3 Comparison of Air-Sea CO2 Flux Estimates . . . .

3.2.3.4 Sea Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3.5 Coastal to Open Ocean Carbon Exchanges . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

78
78
79
80
80
80

81
81
83
83
84
84
84
85
85
87
87
90
90
92

. 93
. 95
. 96
. 97
. 99
. 100
. 101
. 102
. 113

.
.
.
.


113
116
117
117

. 117
.
.
.
.
.
.

121
121
123
124
125
126


www.pdfgrip.com
xiv

Contents

3.2.4

Air-Sea CO2 Fluxes in Coastal Areas . . . . . . . . . . . . . . . . .
3.2.4.1 Continental Shelves . . . . . . . . . . . . . . . . . . . . . . .

3.2.4.2 Near-Shore Systems . . . . . . . . . . . . . . . . . . . . . . .
3.2.4.3 Multi-Year Changes and Trends . . . . . . . . . . . . . .
3.3 Marine Distribution and Air-Sea Exchange of N2O . . . . . . . . . . . . .
3.3.1 Global Tropospheric N2O Budget . . . . . . . . . . . . . . . . . . . .
3.3.2 Nitrous Oxide Formation Processes . . . . . . . . . . . . . . . . . .
3.3.2.1 Denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2.2 Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2.3 N2O Formation by Dissimilatory Nitrate
Reduction to Ammonium . . . . . . . . . . . . . . . . . . .
3.3.3 Global Oceanic Distribution of Nitrous Oxide . . . . . . . . . . .
3.3.4 Coastal Distribution of Nitrous Oxide . . . . . . . . . . . . . . . . .
3.3.5 Marine Emissions of Nitrous Oxide . . . . . . . . . . . . . . . . . .
3.4 Marine Distribution and Air-Sea Exchange of CH4 . . . . . . . . . . . . .
3.4.1 Global Tropospheric CH4 Budget . . . . . . . . . . . . . . . . . . . .
3.4.2 Formation and Removal Processes for Methane . . . . . . . . . .
3.4.3 Global Oceanic Distribution of Methane . . . . . . . . . . . . . . .
3.4.4 Coastal Distribution of Methane . . . . . . . . . . . . . . . . . . . . .
3.4.4.1 Coastal Sediments . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4.2 Coastal Waters . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4.3 Methane Hydrates . . . . . . . . . . . . . . . . . . . . . . . .
3.4.5 Marine Emissions of Methane . . . . . . . . . . . . . . . . . . . . . .
3.5 Impact of Global Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Future Changes in the Physics of the Oceanic Surface
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1.1 Carbon Dioxide in the Open Ocean . . . . . . . . . . . .
3.5.1.2 Carbon Dioxide in Coastal Seas . . . . . . . . . . . . . .
3.5.1.3 Nitrous Oxide and Methane . . . . . . . . . . . . . . . . .
3.5.2 Ocean Acidification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2.1 Carbon Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2.2 Nitrous Oxide and Methane . . . . . . . . . . . . . . . . .

3.5.3 Deoxygenation and Suboxia in the Open Ocean . . . . . . . . .
3.5.4 Coastal Euthrophication and Hypoxia . . . . . . . . . . . . . . . . .
3.5.5 Changes in Methane Hydrates . . . . . . . . . . . . . . . . . . . . . .
3.6 Key Uncertainties in the Air-Sea Transfer of CO2, N2O and CH4 . . .
3.6.1 Outgassing of Riverine Carbon Inputs . . . . . . . . . . . . . . . . .
3.6.2 Heterogeneity in Coastal Systems . . . . . . . . . . . . . . . . . . . .
3.6.3 Sea Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.4 Parameterising Air-Sea Gas Transfer . . . . . . . . . . . . . . . . .
3.6.5 Data Collection, Data Quality and Data Synthesis . . . . . . . .
3.7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1 Carbon Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2 Nitrous Oxide and Methane . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126
126
129
129
130
130
130
130
131
132
132
134
135
137
137
137

139
139
139
142
143
146
147
147
147
149
150
150
150
152
152
153
153
154
154
155
155
155
155
156
156
156
157

www.dbooks.org



www.pdfgrip.com
Contents

xv

4

Ocean–Atmosphere Interactions of Particles . . . . . . . . . . . . . . . . . . .
Gerrit de Leeuw, Ce´cile Guieu, Almuth Arneth, Nicolas Bellouin,
Laurent Bopp, Philip W. Boyd, Hugo A.C. Denier van der Gon,
Karine V. Desboeufs, Franc¸ois Dulac, M. Cristina Facchini,
Brett Gantt, Baerbel Langmann, Natalie M. Mahowald,
Emilio Maran˜o´n, Colin O’Dowd, Nazli Olgun, Elvira Pulido-Villena,
Matteo Rinaldi, Euripides G. Stephanou, and Thibaut Wagener
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Aerosol Production and Transport in the Marine Atmosphere . . . . .
4.2.1 Sources of Aerosol in the Marine Atmosphere . . . . . . . . . . .
4.2.1.1 Sea Spray Aerosol Production . . . . . . . . . . . . . . . .
4.2.1.2 Organic Enrichment of Particulate Organic
Matter in Sea Spray Aerosol . . . . . . . . . . . . . . . . .
Laboratory Studies . . . . . . . . . . . . . . . . . . . . . . . .
Global Distribution of Organic Enrichment . . . . . .
4.2.1.3 Secondary Aerosol Formation in the Marine
Atmospheric Boundary Layer . . . . . . . . . . . . . . . .
Secondary Inorganic Aerosol Formation . . . . . . . .
Secondary Organic Marine Aerosol . . . . . . . . . . .
New Particle Formation in the Marine Boundary
Layer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Non-Marine Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.2.1 Desert Dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2.2 Volcanic Gases, Aerosols and Ash . . . . . . . . . . . .
4.2.2.3 Global Emissions of Biogenic Volatile Organis
Compounds (BVOC’s) from Terrestrial
Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2.4 Anthropogenic Emissions . . . . . . . . . . . . . . . . . . .
Anthropogenic Land-Based Emissions . . . . . . . . .
Uncertainty in Global Anthropogenic Emissions . . .
Global Biomass Burning Emissions . . . . . . . . . . .
International Shipping Emissions . . . . . . . . . . . . .
Comparison and Evaluation of Different Emission
Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Ageing and Mixing of Aerosols During Transport . . . . . . . .
4.2.3.1 Chemical Ageing of Organic Aerosols . . . . . . . . .
4.2.3.2 Internal Mixing . . . . . . . . . . . . . . . . . . . . . . . . . .
Dust/Inorganic Species . . . . . . . . . . . . . . . . . . . . .
Dust/Organic Species . . . . . . . . . . . . . . . . . . . . . .
Sea Salt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Future Directions . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4 Dust-Mediated Transport of Living Organisms and
Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Direct Radiative Effects (DRE) . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Effects on Cloud Formation and Indirect Radiative Effects . . . . . . .
4.5 Deposition of Aerosol Particles to the Ocean Surface
and Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

171

171
174

174
174
176
179
180
182
182
183
184
186
186
189

191
193
193
193
194
194
195
196
196
197
197
198
200
200
201
202
204

206


www.pdfgrip.com
xvi

Contents

4.5.1

Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.1 Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.2 Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.3 Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1.4 Deposition of Other Species . . . . . . . . . . . . . . . . .
4.5.2 Elements of Biogeochemical Interest and Their
Chemical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.3 Dissolution- Scavenging Processes . . . . . . . . . . . . . . . . . . .
4.5.4 Atmospheric Impacts in HNLC and LNLC Areas . . . . . . . .
4.5.4.1 Experimental: Large Scale Fertilisation
Experiments (Fe, P) . . . . . . . . . . . . . . . . . . . . . . .
4.5.4.2 Experimental: Microcosms . . . . . . . . . . . . . . . . . .
Main Results Obtained from the Microcosm
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.4.3 Experimental: In Situ Mesocosms . . . . . . . . . . . . .
4.5.4.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.5 Particulate Matter and Carbon Export . . . . . . . . . . . . . . . . .
4.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5


206
206
207
209
209
209
211
213
213
215
215
218
221
222
224
227

Perspectives and Integration in SOLAS Science . . . . . . . . . . . . . . . . . 247
Ve´ronique C. Garc¸on, Thomas G. Bell, Douglas Wallace, Steve R. Arnold,
Alex Baker, Dorothee C.E. Bakker, Hermann W. Bange, Nicholas R. Bates,
Laurent Bopp, Jacqueline Boutin, Philip W. Boyd, Astrid Bracher,
John P. Burrows, Lucy J. Carpenter, Gerrit de Leeuw, Katja Fennel,
Jordi Font, Tobias Friedrich, Christoph S. Garbe, Nicolas Gruber,
Lyatt Jaegle´, Arancha Lana, James D. Lee, Peter S. Liss, Lisa A. Miller,
Nazli Olgun, Are Olsen, Benjamin Pfeil, Birgit Quack, Katie A. Read,
Nicolas Reul, Christian Roădenbeck, Shital S. Rohekar, Alfonso Saiz-Lopez,
Eric S. Saltzman, Oliver Schneising, Ute Schuster, Roland Seferian,
Tobias Steinhoff, Pierre-Yves Le Traon, and Franziska Ziska
5.1 Perspectives: In Situ Observations, Remote Sensing, Modelling

and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.1.1 In Situ Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.1.1.1 ARGO (T, S, O2) . . . . . . . . . . . . . . . . . . . . . . . . . 248
5.1.1.2 Ocean Observatories . . . . . . . . . . . . . . . . . . . . . . 250
5.1.1.3 Atmospheric Observatories . . . . . . . . . . . . . . . . . . 250
5.1.1.4 Monitoring Reactive Trace Species in the
Marine Atmosphere: Highlights from the Cape
Verde Observatory . . . . . . . . . . . . . . . . . . . . . . . . 251
5.1.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.1.2 Earth Observation Products . . . . . . . . . . . . . . . . . . . . . . . . 255
5.1.2.1 Altimetry, SST, Winds, Sea State . . . . . . . . . . . . . 256
5.1.2.2 Sea Surface Salinity . . . . . . . . . . . . . . . . . . . . . . . 260
5.1.2.3 Marine Carbon Observations from Satellite Data:
Ocean Color/PIC/POC . . . . . . . . . . . . . . . . . . . . . 261
5.1.2.4 Sea Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.1.2.5 Aerosols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

www.dbooks.org


www.pdfgrip.com
Contents

xvii

5.1.2.6

Satellite Measurements of Trace Gases Over
the Oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3.1 Global Perspective, Prognostic IPCC
and Hindcast . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3.2 Regional Perspectives from High-Resolution
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3.3 Inverse Modelling . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.4 SOLAS/COST Data Synthesis Efforts . . . . . . . . . . . . . . . . .
5.1.4.1 MEMENTO (MarinE MethanE and
NiTrous Oxide) Database . . . . . . . . . . . . . . . . . . .
5.1.4.2 HalOcAt (Halocarbons in the Ocean
and Atmosphere) . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.4.3 DMS-GO (DMS in the Global Ocean) . . . . . . . . . .
5.1.4.4 The Surface Ocean CO2 ATlas (SOCAT) . . . . . . .
5.1.4.5 Aerosol and Rainwater Chemistry Database . . . . .
5.1.4.6 A Data Compilation of Iron Addition
Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Examples of SOLAS Integrative Studies . . . . . . . . . . . . . . . . . . . .
5.2.1 DMS Ocean Climatology and DMS Marine Modelling . . . .
5.2.1.1 Global Climatologies Based on Observations . . . . .
5.2.1.2 Diagnostic Approaches: Based on Empirical
Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1.3 Prognostic Modelling: From 1D to 3D . . . . . . . . .
5.2.1.4 Examples of Applications . . . . . . . . . . . . . . . . . . .
Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . .
Iron Fertilisation . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 North Pacific Volcanic Ash and Ecosystem Response . . . . .
5.2.3 CO2 in the North Atlantic . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4 Global Distribution of Sea Salt Aerosols . . . . . . . . . . . . . . .

5.3 Perspectives for the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

267
270
270
271
272
274
275
276
276
276
278
279
280
281
283
284
284
284
284
284
286
286
286
287
289
292
293

294

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307


www.pdfgrip.com

.

www.dbooks.org


www.pdfgrip.com

Contributors

Almut Arneth is Professor and Head of Division of
Ecosystem-Atmosphere Interactions at the Karlsruhe Institute of Technology, Institute of Meteorology and Climate
Research/Atmospheric Environmental Research. Her
research interests are in the interactions of climate change,
land use change, vegetation dynamics and terrestrial biogeochemical cycles, and the feedbacks existing in that
system.

Steve Arnold is a Senior Lecturer in the School of Earth
and Environment at the University of Leeds. His research
interests are in the chemistry of the lower atmosphere
and interactions between air quality, climate and the
biosphere.

xix



www.pdfgrip.com
xx

Contributors

Alex Baker is a Reader in Marine and Atmospheric
Chemistry in the School of Environmental Sciences at
the University of East Anglia in Norwich, UK. He has
studied the marine and industrial chemistry of humic
material and the biogeochemistry of trace metals in seawater and, since 1997, has worked primarily on aerosol
biogeochemistry in the marine boundary layer.

Dorothee Bakker is a Research Officer in the School of
Environmental Sciences at the University of East Anglia
in Norwich, UK. Her research is on processes controlling
the carbon sink in shelf seas and the oceans, notably the
roles of marine biota, ocean circulation, iron supply, sea
ice and ocean acidification. Dorothee has a strong interest in creating better access to marine biogeochemical
data, e.g. via the Surface Ocean CO2 Atlas (SOCAT)
(www.socat.info).

Hermann Bange is a Professor of Marine Chemistry in
the Marine Biogeochemistry Research Division of
GEOMAR in Kiel, Germany. His research interests are
in the marine biogeochemistry of trace gases (N2O, CH4
and DMS) and the marine nitrogen cycle. He was
Co-chair of Working Group 3 of COST Action 735.
Currently, he is the Coordinator of the SOPRAN

(Surface Ocean Processes in the Anthropocene; www.
sopran.pangaea.de) project, which is a German contribution to SOLAS.

www.dbooks.org


www.pdfgrip.com
Contributors

xxi

Nick Bates is Senior Scientist at the Bermuda Institute of
Ocean Sciences (BIOS), a US scientific research institution
based in Bermuda. He is a Chemical Oceanographer whose
research is focused on the ocean carbon cycle, marine
biogeochemistry and ocean acidification. At present, he is
Principal Investigator for two ocean time series near
Bermuda, namely the Bermuda Atlantic Time-series
Study (BATS) and Hydrostation S. Other projects include
the investigations into the impact of ocean acidification on coral reef ecosystems and
studies of the ocean carbon cycle in the North Atlantic Ocean, Arctic Ocean and
surrounding shelf seas, and the Southern Ocean.

Tom Bell is a Senior Scientist at the Plymouth Marine
Laboratory, Plymouth, UK. His research interests are
in ocean–atmosphere interactions and surface ocean
trace gas biogeochemistry. His recent work has been
to make direct measurements of DMS air-sea flux by
eddy covariance using Atmospheric Pressure-Chemical
Ionisation Mass Spectrometry (API-CIMS).


Nicolas Bellouin is a Senior Climate Research Scientist
at the Met Office Hadley Centre in Exeter, UK. He
investigates the role of atmospheric aerosols within the
Earth system by using large-scale numerical models and
satellite observations.


www.pdfgrip.com
xxii

Contributors

Laurent Bopp is a Senior Scientist in the modelling
department of the Laboratoire des Sciences du Climat et
de l’Environnement (LSCE) at l’Institut Pierre-Simon
Laplace (IPSL) in Paris, France. He graduated from
Pierre-et-Marie-Curie University and was a Visiting Scientist at both the Max Planck Institute in Jena, Germany,
and the University of East Anglia in Norwich, UK. Most
of his research focuses on marine biogeochemical cycles
and on how marine ecosystems and the ocean carbon cycle
respond to natural and anthropogenic climate change.

Alberto Borges is FRS-FNRS Research Associate at the
University of Lie`ge where he heads the Chemical Oceanography Unit. His research interests are in carbon cycling
across aquatic systems including freshwater ecosystems
(lakes and rivers), coastal ecosystems (estuaries, seagrass
beds, mangroves and continental margins), and open
ocean.


Jacqueline Boutin is a Research Scientist at Laboratoire
d’Oce´anographie et du Climat-Expe´rimentation et
Approches Nume´riques in Paris, France. Her research
interests are in air–sea exchange particularly involving
upper ocean variability and carbon dioxide and freshwater fluxes.

Philip Boyd is a Professor of Ocean Biogeochemistry
based at the Institute for Marine and Antarctic Science,
University of Tasmania. His research interests include
trace metal biogeochemistry and exploring the links
between dust, iron supply and altered ocean carbon
biogeochemistry.

www.dbooks.org


www.pdfgrip.com
Contributors

xxiii

Astrid Bracher is leading the Helmholtz University
Young Investigator’s Group Phytooptics .
de/en/go/phytooptics at the Climate Section of AWI http://
www.awi.de/en/ and at the IUP at the University of
Bremen She is an
adjunct professor at the Department of Physics at the
University of Bremen. Her studies are in the field of biooptical in situ sampling techniques and ocean colour
retrieval techniques. Her recent studies focus on retrieving
new bio-optical information (phytoplankton functional

types, vibrational Raman scattering, fluorescence) from
hyperspectral satellite data.
John Burrows is Professor of Atmospheric and Oceanic
Physics at the University of Bremen, Director of the
Institute of Environmental Physics at the University of
Bremen and a Fellow of the Natural Environmental
Research Council’s Centre for Ecology and Hydrology.
His research is focused on Earth system and observation
science, atmospheric physics and chemistry, kinetics and
spectroscopy. He has pioneered the development of the
remote sensing of tropospheric trace gases from space.
He is also President of the International Commission on
Atmospheric Chemistry and Global Pollution.
Lucy Carpenter received her BSc (hons) in Chemistry
from the University of Bristol and studied for a PhD
(awarded in 1996) in the subject of peroxy radicals in
the lower atmosphere at the University of East Anglia.
After postdoctoral research at the University of East
Anglia and the University of Leeds, she moved to the
Department of Chemistry, University of York, as a Lecturer
in 2000 and was awarded a personal chair in 2009. Her
research addresses the atmospheric impacts of marinederived trace gases, particularly organohalogens. In 2006,
she was awarded a Philip Leverhulme Prize in Earth, Ocean
and Atmospheric Sciences.
Elizabeth Dahl is an Associate Professor of Chemistry at
Loyola University, Maryland, USA. Her research focuses
on the sources of alkyl nitrates in natural waters and the
impact on tropospheric chemistry. She has a PhD in Earth
System Science from the University of California, Irvine,
and has mentored over a dozen undergraduate research

students during her time at Loyola. When she is not
working she enjoys spending time on kitchen chemistry
with her future scientists.


www.pdfgrip.com
xxiv

Contributors

Gerrit de Leeuw is a Research Professor at the Finnish
Meteorological Institute and in the Department of Physics at the University of Helsinki, both in Helsinki,
Finland, while being also affiliated to TNO, Utrecht,
the Netherlands. His primary research interests are satellite remote sensing of aerosols, the production of sea
spray aerosol and the application of satellite data to
climate change and air quality as well as to
ocean–atmosphere and land–atmosphere interactions.

Bruno Delille is FRS-FNRS Research Associate at the
Chemical Oceanography Unit of the University of Lie`ge.
His research interests are in climate gas dynamics in
polar ocean with an emphasis on sea ice.

Hugo Denier van der Gon is a Senior Researcher in the
Department of Climate, Air and Sustainability of the
Netherlands Organisation for Applied Scientific
Research (TNO), Utrecht, the Netherlands. His current
research interests are (i) improving emission inventories
of non-CO2 greenhouse gases and air pollutants for use in
atmospheric chemistry and transport models, (ii) chemical speciation and source apportionment of particulate

matter emissions and (iii) the use of satellite data to
validate emission estimates.

Karine Desboeufs is Assistant Professor in the LISA
(Laboratoire
Interuniversitaire
des
Syste`mes
Atmosphe´riques) at the University of Paris Diderot,
France. Her research activities include the study of dust
(and associated nutrients) cycling in the atmosphere and
its biogeochemical impact after deposition to the ocean.

www.dbooks.org


×