Tải bản đầy đủ (.pdf) (649 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (15.03 MB, 649 trang )


www.pdfgrip.com

Flavours and Fragrances
Chemistry, Bioprocessing and Sustainability


www.pdfgrip.com

R. G. Berger (Ed.)

Flavours
and Fragrances
Chemistry, Bioprocessing
and Sustainability
With 231 Figures and 61 Tables

123


www.pdfgrip.com

Prof. Dr. Ralf Günter Berger
Universität Hannover
FB Chemie, Institut für Lebensmittelchemie
Wunstorferstraße 14
30453 Hannover, Germany


Library of Congress Control Number: 2006939012
ISBN 978-3-540-49338-9 Springer Berlin Heidelberg New York


DOI 10.1007/b136889
This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms
or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer-Verlag. Violations are liable for prosecution
under the German Copyright Law.
Springer is a part of Springer Science + Business Media
springeronline.com
©Springer-Verlag Berlin Heidelberg 2007
Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free for general use.
Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual
case the user must check such information by consulting the relevant literature.
Coverdesign: WMXDesign GmbH, Heidelberg
Typesetting & production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig,
Germany
Printed on acid-freepaper 2/3141/YL - 543210


www.pdfgrip.com

Preface

Our ancestors lived in intimacy with nature and knew well that their survival
depended on a safe and fertile environment. The introduction of three-field rotation in the eighth century bc, for example, counteracted the depletion of soil
and increased crop yields without negative side effects. The first definition of the

modern term “sustainability” is usually ascribed to forest chief captain H. C. von
Carlowitz, who in 1713 in his Sylvicultura Oeconomica formulated principles for
a sensible economy of wood. From J. S. Mill (Of the Stationary State) to modern
academic representatives, such as K. Boulding, D. E. Meadows (The Limits to
Growth), R. Easterlin and H. E. Daly, the “ecological economists” have remained
a concerned but rather ignored minority. The situation started to change after
the famous Brundtland report (Our Common Future) of the UN defined sustainability as a desirable characteristic of development, which will not only meet
current needs of people, but also will not jeopardise the ability of future generations to meet their demands and to choose their style of life. This definition
includes a social dimension and was also adopted by Agenda 21 of the UNCED
in 1992 in Rio de Janeiro.
A set of rules may aid in assessing the sustainable quality of a process:
• Consumption and regeneration of the raw materials should be balanced.
• Non-regenerative goods should be replaced.
• Generation of waste and its biological elimination should be balanced.
• Technical processes should match biological processes on the time scale.
A merely growth oriented economy must violate these rules. According to
the first law of thermodynamics, energy in a closed system like the planet earth
is finite (if we neglect the solar photon flux). Today mankind secures its survival
by exploiting low-entropy resources, such as fossil fuels, concentrated minerals
and higher plants, and by converting them to high-entropy products, such as
carbon dioxide, cars and fine chemicals. However, as proven by our office desks,
high entropy levels can only be lowered by energy input. Here the first and the
second law of thermodynamics collide, and we apparently encounter the inner
core of the conflict.
With the world running out of crude oil, species dying out at an alarming rate
and political leaders seemingly little concerned about the predicted disasters,
scientists should feel challenged to suggest solutions. A sustainable production


www.pdfgrip.com

VI

Preface

of natural flavours, like wood, fats and oils, saccharides, phytomedicines, bioethanol, biopolymers and natural colours, mainly depends on the existence of
reliable plant sources. But how long will the traditional sources of flavours last?
Quality of soil, unfavourable weather conditions, insect infestations and sociopolitical instabilities may all adversely affect classical agricultural production.
Are there new biosources that could replace exhausted ones? Will, as with vanillin production, the exploitation of waste streams of the agricultural and food
industries gain importance? “White biotechnology” is propagated as an alternative option, but will bioprocesses possess stability, specificity, up-scalability and
profitability? Will the recent advances in biotechnology be successfully transferred to industrial scales? How can the aspired match of economy and ecology
be achieved?
In an attempt to compile the current status of sustainability in the flavour
industry and the developments in the foreseeable future of flavour production,
the present volume discusses consumer trends and preferences, legal and safety
aspects; it describes renewable resources of flavours, such as spice plants, fruits,
vegetables, fermented and heated plants, and natural building blocks; it presents
analytical methods, such as gas chromatography coupled to human or electronic
noses or to mass spectrometers; it deals with the isolation, quality control and
formulation of flavours for liquid or dry products, with biotechnology to provide novel renewable resources, with enzymes, microbial and fungal cells to biotransform cheap substrates or to produce flavours de novo, and with plant cells
as a resource of genes coding for metabolic activities in transgenic producers.
The manufacturers of flavours and fragrances and their scientists are working
at the leading edge of research, they look back on a long history of using natural
resources, and are profitable on the basis of renewables. A wealth of experience
has been gathered on issues such as provenance and quality, safety, authenticity
and on problems of isolation, processing and shelf life. On the basis of this fundament of knowledge, we should start to deal with sustainability now, before the
looming problems start to deal with us.
Finally, I should like to express my sincere thanks to the contributors for their
thoughts and writing efforts, and to the publishers for their continuing support
and patience.
Hanover, Summer 2006


Ralf Günter Berger


www.pdfgrip.com

Contents

1

The Flavour and Fragrance Industry—Past, Present, and Future . . . . . . . . . . . . . . . . . 1

Matthias Guentert
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2

Flavours: the Legal Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Dirk A. Müller
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Legal Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Current Situation in the EU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expected Regulations on Flavourings in the EU in the Future . . . . . . . . . . . . . . . . . . . .
Current Situation in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Situation in Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Global Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Legal Situation and Natural Flavourings, a Brief Reflection . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15
16
16
18
19
20
21
22
23

3

Olfaction, where Nutrition, Memory and Immunity Intersect . . . . . . . . . . . . . . . . . . . 25

J. Bruce German, Chahan Yeritzian, Vladimir B. Tolstoguzov
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Consolidation—Short-Term, Long-Term and Permanent Memories . . . . . .
Multidimensional Biomemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour Sensation as a Part of Personal Dietary Choices . . . . . . . . . . . . . . . . . . . . . . . . .
Measuring Flavour Perception Is Influenced by Several Factors . . . . . . . . . . . . . . . . . . .
The “Melody” of Coffee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Metabolomics and the Metabolic Response to Foods . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Profiling of Postprandial Plasma Lipid Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Profiling Signalling Lipids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25
27
30
31
31
33
36
37
38
39
40

4


Chemistry of Essential Oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

K. Hüsnü Can Başer, Fatih Demirci
4.1
4.1.1

What Is an Essential Oil? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Non-terpenoid Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44


www.pdfgrip.com
VIII

Contents

4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.2
4.3
4.4

Terpenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C13 Norterpenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Phenylpropanoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Esters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phthalides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nitrogen-Containing Essential Oil Constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sulphur-Containing Essential Oil Constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isothiocyanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impact of Chirality: Enantiomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analysis of Essential Oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45
63
64
65
66
67
68
69
70
71
73
75
83

5

Bioactivity of Essential Oils and Their Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 87


Adolfina R. Koroch, H. Rodolfo Juliani, Julio A. Zygadlo
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Antimicrobial Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Antiviral Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Antioxidant Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Analgesic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Digestive Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Anticarcinogenic Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Semiochemical Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Other Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Citrus Flavour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Russell Rouseff, Pilar Ruiz Perez-Cacho
6.1
6.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physical Characteristics of Citrus Fruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technological Flavour Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peel Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Essences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Petitgrain Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oil of Neroli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Botanical Sources of Citrus Flavours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sweet Orange (Citrus sinensis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sour/Bitter Orange (C. aurantium) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lemon (C. lemon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grapefruit (C. paradisi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lime (C. aurantifolia) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mandarin (C. reticulata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour-Impact Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


117
118
119
119
120
120
120
121
121
122
122
123
124
124
125
132


www.pdfgrip.com
Contents
7

IX

Fruits and Vegetables of Moderate Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Lars P. Christensen, Merete Edelenbos, Stine Kreutzmann
7.1
7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5

8

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Formation of Flavours in Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compounds Formed by Degradation of Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compounds Formed from Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compounds Formed from Glucosinolates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compounds of Terpenoid Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phenols and Related Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pome Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stone Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Berry Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vegetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alliaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brassicaceae (Formerly Cruciferae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cucurbitaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fabaceae (Formerly Leguminosae) and Solanaceae . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Apiaceae (Formerly Umbelliferae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135
136
137
140
142
143
143
145
145
148
157
165
166
166
169
172
173
176
180

181

Tropical Fruit Flavour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Mário Roberto Maróstica Jr, Gláucia Maria Pastore
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Guava (Genus Psidium) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Banana (Genus Musa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mango (Mangifera indica) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Melon (Cucumis melo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Papaya (Carica papaya) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Passion Fruit (Passiflora edulis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pineapple (Ananas comosus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cupuacu (Theobroma grandiflorum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bacuri (Platonia insignis M. or Platonia sculenta) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sustainability of Tropical Cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


189
189
190
192
193
194
195
196
197
198
199
200

9

Vanilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

H. Korthou, R. Verpoorte
9.1
9.2
9.3
9.4
9.5
9.6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vanillin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Curing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

203
204
205
205
206
209


www.pdfgrip.com
X
9.7
9.8
9.9

10

Contents
Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biotechnological Production of Vanillin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

210
211
213
213

Flavour of Spirit Drinks: Raw Materials, Fermentation, Distillation, and Ageing


219

Norbert Christoph, Claudia Bauer-Christoph
10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.4
10.5
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
10.6.7
10.6.8
10.6.9
10.6.10
10.7
10.8

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour Compounds in Distilled Spirits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carbonyl Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aliphatic and Aromatic Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fatty Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Esters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Important Flavour Compounds from Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . .
Distillation—Separation and Fractionation of Flavour . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour Compounds Originating from Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour and Flavour-Related Aspects of Distilled Spirits . . . . . . . . . . . . . . . . . . . . . . .
Wine and Wine-Pomace Brandies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fruit Spirits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grain Spirits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vodka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rum, Cachaỗa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Juniper-, Caraway-, and Aniseed-Flavoured Spirits . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tequila, Mezcal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shochu, Soju, Awamori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absinth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Liqueurs and Speciality Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sustainability in Production of Flavour of Spirits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

219
220
220
223
223
224
224
225
226

227
227
228
230
231
231
232
233
234
234
235
237
237
238

11

Wine Aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Ulrich Fischer
11.1
11.2
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.4.1
11.4.2

11.5
11.5.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic behind Varietal Aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chemical Basis of Varietal Aroma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Monoterpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C13 Norisoprenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Methoxypyrazines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sulphur Compounds with a Thiol Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impact of Viticulture and Growing Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sun Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stress-Induced Aroma Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impact of Enology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Grape Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

241
242
243
243
246
247
247
249
249
251
253
255



www.pdfgrip.com
Contents
11.5.2
11.5.3
11.6
11.7

12

Impact of Yeast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Impact of Modern Wine Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Mystery of Wine Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XI
256
258
262
263
264

The Maillard Reaction: Source of Flavour in Thermally Processed Foods . . . . . . . . 269

Donald S. Mottram
12.1
12.2
12.2.1
12.2.2
12.3

12.3.1
12.3.2
12.3.3
12.4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Chemistry of the Maillard Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stages in the Maillard Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Strecker Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Classes of Aroma Compounds Formed in the Maillard Reaction . . . . . . . . . . . . . . . .
Oxygen-Containing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nitrogen-Containing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sulphur-Containing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

269
270
270
272
274
275
276
278
281
282

13

Chemical Conversions of Natural Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285


Peter H. van der Schaft
13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.3
13.3.1
13.3.2
13.3.3
13.4
13.4.1
13.4.2
13.5
13.5.1
13.5.2
13.6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terpenes as Renewable Resources for Terpene Flavour Molecules . . . . . . . . . . . . . . . .
Pinenes from Turpentine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Citral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Mint Components L-Menthol and L-Carvone . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terpene Sulfur Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Terpene Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vanillin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vanillin Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vanillin Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Heliotropine from Safrole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sugars as Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sources of Xylose and Rhamnose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Examples of Flavour Chemicals Derived from Sugars . . . . . . . . . . . . . . . . . . . . . . . . . .
L-Cysteine and L-Methionine as Sources of Hydrogen Sulfide and Methanethiol . . .
Cysteine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Methionine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chemical Conversions of Natural Precursors Obtained by Fermentation
or from Residual Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.6.1 Aliphatic and Aromatic Esters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.6.2 Heterocyclic Flavour Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.7
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

285
286
286
288
289
291
292
294
294
294
295
297
297
297

299
299
299
299
299
300
301
301


www.pdfgrip.com
XII
14

Contents
Industrial Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Herbert J. Buckenhueskes
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15


Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality and Quality Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physicochemical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specific Safety Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microbial Aspects and Microbiological Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Residues of Plant-Conditioning and Plant-Protective Agents . . . . . . . . . . . . . . . . . . . .
Biologically Active Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

303
303
305
306
307
307
308
310
311
312

Advanced Instrumental Analysis and Electronic Noses . . . . . . . . . . . . . . . . . . . . . . . . 313

Hubert Kollmannsberger, Siegfried Nitz, Imre Blank
15.1
15.2
15.2.1
15.2.2
15.3

15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.4.5
15.4.6
15.4.7
15.4.8
15.4.9
15.5
15.5.1
15.5.2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multidimensional Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Classical Multidimensional Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comprehensive Two-Dimensional Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . .
Fast Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electronic Noses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Catalytic or Metal Oxide Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Metal Oxide Semiconductor Field-Effect Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conducting Polymer Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acoustic Wave Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mass Spectrometry Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Sensor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applications, Potential and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Time-Resolved Analysis of Volatile Organic Compounds . . . . . . . . . . . . . . . . . . . . . . .

Proton-Transfer-Reaction Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resonance-Enhanced Multiphoton Ionisation Time-of-Flight Mass Spectrometry . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

313
314
314
317
322
326
327
327
327
328
328
329
330
331
334
336
337
344
349

16

Gas Chromatography–Olfactometry of Aroma Compounds . . . . . . . . . . . . . . . . . . . 363

Werner Grosch
16.1

16.2
16.2.1
16.2.2
16.2.3
16.3
16.4
16.4.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The GC-O Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation of the Volatile Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Screening for Odorants by GC-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dilution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

363
363
363
364
366
367
368
368


www.pdfgrip.com
Contents


XIII

16.4.2
16.4.3
16 4.4
16.4.5
16.5
16.6
16.6.1
16.6.2
16.6.3

Aroma Extract Dilution Analysis (AEDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aroma Extract Concentration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GC-O of Static Headspace Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limitations of Extract Dilution Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enrichment and Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aroma Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Odour Activity Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aroma Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

368
369
371
373
373
374
374

375
375
377

17

Enantioselective and Isotope Analysis—Key Steps to Flavour Authentication . . . . 379

A. Mosandl
17.1
17.1.1
17.1.2
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.3
17.3.1
17.3.2
17.4
17.4.1
17.4.2
17.5
17.5.1
17.5.2
17.6
17.6.1
17.6.2

17.7

18

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isotope Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enantioselectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enantioselective Capillary Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analytical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enantioselective Multidimensional Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . .
Detection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chiral γ-Lactones and δ-Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-Alkylbranched Acids (Esters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stir-Bar Sorptive Extraction–Enantioselective Multidimensional Gas
Chromatography–Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tea Tree Oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isotope Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Capillary Gas Chromatography–Isotope Ratio Mass Spectrometry Techniques . . . .
Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comprehensive Authenticity Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(E)-α-Ionone and (E)-β-Ionone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lavender Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

379

379
379
380
380
382
383
383
385
388
388
390
390
392
394
394
394
395
396
396
400
402
403

Flavour-Isolation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Gary A. Reineccius
18.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2
Isolation of Flavour Compounds for Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18.2.1 Absorption (Polymer Trapping, Solid-Phase Microextraction,
Stir Bar, Solid-Phase Extraction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2.2 Distillation (Simultaneous Distillation/Extraction, Vacuum Distillation) . . . . . . . . . .

409
409
410
412


www.pdfgrip.com
XIV

Contents

18.2.3
18.2.4
18.2.5
18.3
18.3.1
18.3.2
18.3.3
18.4
18.4.1
18.4.2
18.4.3
18.4.4
18.5

Solvent Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combinations of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comments on Aroma-Isolation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation of Flavour from Plant Materials for Commercial Use . . . . . . . . . . . . . . . . . .
Distillation (Essential Oils) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solvent Extraction (Oleoresins, Extracts, and Infusions) . . . . . . . . . . . . . . . . . . . . . . . .
Cold Pressing (Citrus Oils) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation of Flavouring Materials from Waste Streams . . . . . . . . . . . . . . . . . . . . . . . . . .
Spinning Cone Concentrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absorption/Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extraction (from Gas or Liquid Streams) Using Cryogenic Traps or Solvents . . . . . .
Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

413
414
414
414
415
416
416
417
418
420
421
423
425
425

19


Aroma Recovery by Organophilic Pervaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

19.1
19.2
19.2.1
19.2.2
19.3

Membrane Processes in the Food Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recovery of Aromas and Aroma Profiles by Pervaporation . . . . . . . . . . . . . . . . . . . . . .
Limitations and Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Market Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

Encapsulation of Fragrances and Flavours: a Way to Control Odour
and Aroma in Consumer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Thomas Schäfer, João G. Crespo
427
429
432
435
436
437

Jeroen J.G. van Soest

20.1
20.2
20.2.1
20.2.2
20.2.3
20.2.4
20.3
20.4
20.5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrix or Coating Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydrophilic Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Processing Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recent Developments and Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Performance of Fragrances in Consumer Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Market Developments and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

439
440
441
442
442
447
450
452
453

453

21

Creation and Production of Liquid and Dry Flavours . . . . . . . . . . . . . . . . . . . . . . . . . 457

Rainer Barnekow, Sylvia Muche, Jakob Ley,
Christopher Sabater, Jens-Michael Hilmer, Gerhard Krammer
21.1
21.1.1
21.1.2
21.1.3

Modern Flavour Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Roots of Flavour Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Raw Materials—the Foundation of Every Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Process Flavours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

457
457
458
463


www.pdfgrip.com
Contents

XV

21.1.4

21.1.5
21.1.6
21.1.7
21.2
21.2.1
21.2.2
21.2.3
21.3
21.3.1
21.3.2
21.4

464
470
473
476
477
477
478
480
482
482
483
486
486

22

Taste Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chemosensates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modern Tools for Flavour Development—Flavour Creation . . . . . . . . . . . . . . . . . . . . .
The Specifics of Flavour Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Formula to Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shelf-Life Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Accelerated Shelf-Life Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chemical Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavour Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Liquid Flavours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dry Flavours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enzymes and Flavour Biotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

M. Menzel, P. Schreier
22.1
22.2
22.2.1
22.2.2
22.2.3
22.3
22.3.1
22.3.2
22.3.3
22.3.4
22.3.5
22.3.6
22.4
22.4.1
22.5

22.5.1
22.5.2
22.6

23

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydrolytic Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lipases (EC 3.1.1.X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glycosidases (EC 3.2.1.X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavorzyme® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oxireductases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Horse Liver Alcohol Dehydrogenase (EC 1.1.1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lipoxygenase (EC 1.13.11.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peroxidases (EC 1.11.1.X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laccase (EC 1.10.3.2)/Germacrene A Hydroxylase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microbial Amine Oxidases (EC 1.4.3.X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vanillyl Alcohol Oxidase (EC 1.1.3.38) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transferases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cyclodextrin Glucanotransferase (EC 2.4.1.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lyases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D-Fructose-1,6-biphosphate Aldolase (EC 4.1.2.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sesquiterpene Synthase (EC 4.2.3.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

489
489
489
493

494
495
495
496
497
499
499
500
501
501
502
502
502
502
503

Microbial Flavour Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Jens Schrader
23.1
23.2
23.3
23.4
23.4.1
23.4.2
23.4.3

Introduction and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics of Microbial Flavour Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-volatile Flavour Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Volatile Flavour Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aliphatic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aromatic Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terpenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

507
509
513
518
518
530
540


www.pdfgrip.com
XVI

Contents

23.4.4 Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
23.4.5 O-Heterocycles, S- and N-Containing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
24

Microbial Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

C. Larroche, J.-B. Gros, P. Fontanille
24.1
24.1.1
24.1.2

24.1.3
24.2
24.2.1
24.2.2
24.3
24.3.1
24.3.2
24.3.3
24.4

Introduction: General Concepts on Biotransformation Multiphase Systems . . . . . . .
Supercritical Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Organic–Aqueous Reaction Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solvent Selection in Organic–Aqueous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Molecular Toxicity of the Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase-Toxicity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engineering Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vapour Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Equilibrium. Activity Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact Between Phases. Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

575
575
577
579
580
581

582
584
585
586
589
595
595

25

The Production of Flavours by Plant Cell Cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

A.H. Scragg
25.1
25.2
25.3
25.3.1
25.3.2
25.3.3
25.3.4
25.4

26

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flavours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Cell and Tissue Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Micropropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plant Cell Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biotransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scale-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

599
600
602
604
604
609
610
610
611

Genetic Engineering of Plants and Microbial Cells for Flavour Production . . . . . . 615

Wilfried Schwab
26.1
26.2
26.3
26.4
26.5
26.6
26.7

Genetic Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terpenoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hexenals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Esters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vanillin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

615
616
619
621
622
624
625
626

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629


www.pdfgrip.com

1 The Flavour and Fragrance Industry—
Past, Present, and Future
Matthias Guentert
Symrise Inc., 300 North Street, Teterboro, NJ 07608, USA

The origin of using odorous substances simply for enjoyment or medicinal reasons is as old as mankind. People have used perfume oils, and unguents on their
bodies for thousands of years in lesser or greater amounts dependent on fashion
whims. The early Egyptians used perfumed balms as part of religious ceremonies and later as part of pre-love-making preparations. Myrrh and frankincense
were exuded gums from trees used to scent the atmosphere in rituals. Other
plants such as rose and peppermint were steeped in oils until a perfumed unguent formed. The unguent was then rubbed into the skin. It is interesting to
note that perfume has come full circle today as more and more of us seek out
high-quality aroma therapy perfumed oils to use in exactly the same way as our

ancestors did. Perfume fell out of use during early Christianity, but was revived
in the medieval period. By the 1600s scents were applied to objects such as furniture, gloves, and fans. In the Georgian era non-greasy eau de Cologne was
developed and it had many uses from bath essence to mouthwash [1].
People have always been interested in the odour and use of essential oils
(from herbs and spices). This is probably attributable to their aromas, and also
to the bacteriostatic and antiseptic properties of many of the aroma chemicals
they contain. While the use of essential oils is associated with mankind’s history,
the beginning of perfumery is more difficult to define.
The late nineteenth century was the first real era of perfume as we know it
when new scents were created because of advances in organic chemistry knowledge. Synthetic perfume products were used in place of certain hard-to-find or
expensive ingredients. At the same time a similar chemical knowledge development happened in textile printing dyes. The small town of Grasse in Provence,
France, became a centre for flower and herb growing for the perfume industry.
The men who treated leathers in the same area found the smells so bad they
perfumed themselves and the leathers. They were knowledgeable about making the botanical essences and were the early perfume noses. But it was only in
the twentieth century that scents and designer perfumes were really mass-produced. Before that, the few trade names that existed were Coty and Yardley, who
made fairly light scents with familiar smells.
Obviously, these first perfumes were all natural, since the introduction of
synthetic aroma chemicals happened only at the end of the nineteenth century.
Along with the invention of certain aroma chemicals, the flavour and fragrance


www.pdfgrip.com
2

1 The Flavour and Fragrance Industry—Past, Present, and Future

industry originated more than 150 years ago, at a time that is in general characterised by significant technological breakthroughs, largely in chemistry. At that
time, the first flavour and fragrance companies were founded by entrepreneurial
scientists or business people, and many still exist, either as such or as the nucleus
of larger firms that evolved during the subsequent decades.

Over the years this industry has developed into a very profitable niche market. It serves retail companies in the food and beverage, cosmetics, toiletry, and
household products markets, as well as the fragrance industries. Food service
and private label companies play an increasingly significant role in this business.
The total market for flavours, fragrances, and cosmetic ingredients is estimated
at €15 billion. The market shares between the flavour and the fragrance parts
are almost equal (€6.5 billion for flavours, €6.5 billion for fragrances). The largest markets are in the Europe, Africa, and Middle East region (36%) and North
America (32%), followed by Asia-Pacific (26%) and South America (6%). Interesting emerging markets are, in particular, China, India, Russia, and Central
America. There are eight major global companies that share about 60% of the
world market. Aside from these multinationals—well-known names to insiders—there are virtually hundreds of smaller companies specialising in certain
segments of this business covering the other half of the market. The two largest flavour and fragrance companies are Givaudan and International Flavors &
Fragrances, followed by Firmenich and Symrise, Quest International, Takasago,
T. Hasegawa, Sensient Technologies, Mastertaste, Danisco, and Mane. The top
two companies have a turnover in excess of $2 billion, the next three companies
have a turnover in excess of $1 billion each. For respective information on the
flavour and fragrance business and the companies, readers are referred to [2].
Another good and recently published source of information on flavours and fragrances is [3]. The latest development of the industry happened just at the end
of 2006 when Givaudan announced that they will acquire Quest International.
In the following, the history and achievements of some of the companies are
described.
In 1993, Bell Flavors & Fragrances acquired the operations of the former
firm Schimmel & Co. in Leipzig, Germany. This company, originally founded
in 1829, is considered the founding firm of the flavour and fragrance industry.
The scientific accomplishments developed at Schimmel formed the basis for the
technology still used in the industry today. Works such as The Encyclopedia of
Essential Oils, published by doctors Gildemeister and Hoffmann in 1899 and
The Theory of the Extraction and Separation of Essential Oils by way of Distillation, published by Carl V. Rechenberg in 1908, became the standards for the
production and use of these products. Outstanding achievement in the field of
terpene chemistry was recognised when Otto Wallach received the Nobel Prize
in Chemistry in 1910 [4].
In 1874, Holzminden chemists Ferdinand Tiemann and Wilhelm Haarmann

first succeeded in synthesising vanillin from coniferin. Holzminden became
the site where vanillin was first produced industrially. Haarmann & Reimer
was the world’s first factory in which synthetic scents and flavourings were produced [5].


www.pdfgrip.com
3

Milestones Haarmann & Reimer:
1874 Haarmann & Reimer founded in Holzminden; industrial production of
aroma chemicals.
1953 Acquisition by Bayer AG in Leverkusen, Germany.
1990 Company expands via acquisitions, including Creations Aromatiques and
Florasynth.
1998 Improvement of margin and performance; focus on major clients and
emerging markets; key account management; centres of expertise created;
regionalisation and market-oriented innovation management.
2003 Merger of Holzminden companies Haarmann & Reimer and Dragoco.
A new corporation is formed: Symrise.
Milestones Dragoco:
1919 Family business founded in Holzminden, Germany, by Carl-Wilhelm
Gerberding.
1930 Flavourings first produced.
1949 Aroma chemicals first produced.
1955 Carl-Heinz Gerberding becomes CEO; company expands internationally
and focuses on independence and profitability.
1981 Horst-Otto Gerberding becomes CEO; extensive investment programme
for regional centres; implementation of a global divisional organisation.
1993 The Dragoco group is restructured and the parent company is turned into
a joint-stock company.

2003 Merger of Holzminden companies Haarmann & Reimer and Dragoco.
A new corporation is formed: Symrise. The latest milestone of the new
company Symrise has been reached at the end of 2006 when the company
became publicly traded.
Firmenich was founded in 1895 in Geneva, by Philippe Chuit, a talented
Swiss chemist, in association with Martin Naef, a shrewd businessman. They
were joined shortly after by Fred Firmenich, who soon became the majority
partner. Since then, Firmenich has remained a family-owned business, building
on a solid foundation of pioneering and entrepreneurial vigour. Today, it is the
world’s largest private company in the fragrance and flavour industry worldwide. Since 1895, Firmenich has built its business on innovative research. Leopold Ruzicka, professor at ETH-Zurich and Nobel Prize winner in 1939, was
Firmenich’s first research director and a life-long consultant [6].
The history of Givaudan [7)], International Flavors & Fragrances [8] and
Quest International [9] can be looked up at their respectively cited Web sites.
The flavour and fragrance business has always been very research driven and
innovative. All larger companies spend about 7–8% of their total sales per annum on research and development. They all have large research centres, usually
centred in their headquarters, as well as development and innovation centres
around the globe. The general focus of their research is on new products, offering better performance at the lowest cost. This can be new molecules but also
a new technique to concentrate (fold) a citrus oil, or a new way to encapsu-


www.pdfgrip.com
4

1 The Flavour and Fragrance Industry—Past, Present, and Future

late a flavour or fragrance. New products must be innovative, environmentally
friendly, and safe. The key to success nowadays is to bring these new research
results to market as quickly as possible; therefore, the major companies all use
the concept of the innovation funnel to ensure proper project management and
efficient commercialisation of innovative ideas. Strong research only pays off

in combination with innovative flavour and fragrance chemists (flavourists and
perfumers) as well as strong application teams in combination with technical
marketing. In addition, all major companies use worldwide IT systems to enable
their product developers and regulatory people to work with a consistent set of
raw materials and product formulas on a worldwide basis.
Flavourists and perfumers are professionals engaged in the study and exploitation of materials capable of impacting the human senses of taste, smell, and
chemesthesis. Flavourists work primarily with substances that are either derived
(directly or indirectly) from plant or animal sources or chemically synthesised
from petrochemicals to develop products intended for use in foods and beverages. Perfumers work mostly with materials of plant, animal, or petrochemical origin to create perfumes, fragranced personal care products, and scented
household goods.
Research carried out by flavour and fragrance companies is generally for
the purpose of understanding, designing, or improving upon the sensory
characteristics and/or the functionality of existing or new products. This often
starts with the detailed chemical analysis of a specific target: a finished product
or raw materials used in its manufacture. Creative flavourists or perfumers,
respectively, with the help of product technologists, may then try to reconstitute
flavours or fragrances that match or improve upon the sensory properties of
the target. In the case of flavourists, matching a specific natural or processed
food or beverage is usually the objective, while a perfumer often has more
latitude in cases where the target fine perfume or household air freshener, for
example, may be little more than a marketing concept. Product technologists
help ensure that flavours and fragrances are stable in products and are released
effectively and are therefore perceivable at the time of consumption or use.
Results of chemical analysis may alternatively be used. For example, to design
better flavour or fragrance molecules; to make improvements in ingredient
formulations or manufacturing processes. It can be mentioned here that the
instrumental analysis part in the major flavour and fragrance companies is very
sophisticated and remarkable. The typical instrumentation ranges from capillary gas chromatography (GC) to high-performance liquid chromatography
(HPLC), Fourier transform IR spectroscopy (FTIR), and nuclear magnetic
resonance (NMR) to coupled techniques like capillary GC–mass spectrometry

(MS), HPLC-MS, and GC-FTIR. More recent advances are the coupled techniques GC-MS-MS as well as HPLC-NMR. This enables industry to separate
virtually all kinds of complex product mixes analytically and also to elucidate
the chemical structures of unknown components. Needless to say that a lot of
year-long experience and know-how is involved when it comes to research and
development in flavour and fragrance companies (personal communication
within Symrise).


www.pdfgrip.com
5

Although the industry is about 150 years old, in particular the use of synthetic materials started only about 60 years ago, after World War II. In 1954, the
flavour use of coumarin was banned by the FDA, television screens were small
and round and only showed black-and-white pictures, and a fine house could
be purchased for less than $17,000. It would be 4 years until Congress enacted
the Food Additives Amendment of 1958 and both the FDA and the Flavour
and Extract Manufacturer’s Association began developing the generally recognised as safe (GRAS) lists. The first commercial production of synthetic linalool,
geraniol, and derivatives had not yet started. Fewer than 500 volatile components had been found in foodstuffs. In 1955 the first primitive commercial gas
chromatograph was introduced and it would be about 15 years later before the
full power of capillary GC-MS became practical and another 15 years with the
use of computerised data bases. Only four of the five basic tastes were generally accepted and theories of olfaction were extremely theoretical. Chirality was
rarely considered as important in the synthesis of flavour or fragrance chemicals. Much has occurred in the last 50 years [10]. In a slightly different way, the
development of the last about 50 years is shown in Fig. 1.1. The flavours used in
the 1950s were mostly liquid. They consisted of natural extracts and essential
oils. The first big paradigm shift happened in the 1960s when several developments happened at the same time. The first synthetic components started being
used, while instrumental analysis and information technology began influencing the flavour and fragrance industry. Spray-dried flavours were developed and
the food market started to embrace convenience food. The big era of analytical flavour research started at that time, characterised by many scientific publications and patents in subsequent years. The next big change happened in the
1990s when research started to become a lot more applications-driven. Flavour
release and integrated product concepts played a role, and food-on-the-go was
developed. In the new century the term “productivity” came up, a clear sign

that shrinking margins led to the consolidation of the food companies and the
search for more cost-effective ingredients and flavours. Taste and taste modifications as well as mouth sensations became prevalent. Sensory started becoming consumer research, and health aspects played into product development.
This is the phase the industry is still in, and we will see when the next paradigm
shift is going to happen. Nowadays the palettes of a perfumer and flavourists are
fully developed. There are still new aroma chemicals entering the market every
year but the number is certainly smaller compared with that 10–20 years ago,
and the organoleptical differences of these new molecules from known ones
are typically smaller, which means business success is usually and primarily not
built anymore solely on new molecules. At the same time the typical analytical
research from the end of the last century that was going on in all large flavour
and fragrance companies with the goal to analyse natural materials (preferably
foods, essential oils, and flower scents) and find new molecules that could be
synthesised and used as nature-identical materials in new compositions is not
the main focus anymore. Nowadays research is a lot more applications-driven.
Innovation happens foremost at the finished-product level; hence, flavour and
fragrance companies work a lot closer together with their large consumer-goods


www.pdfgrip.com
6

1 The Flavour and Fragrance Industry—Past, Present, and Future

customers and in many cases have taken on a part of the work that used to be
done in their laboratories. On the flavour side, research on taste and taste modification has become a lot more important than the work on volatile materials.
Topics like salt taste enhancement or sweetness enhancement prevail. Mastering the flavour release in various applications and encapsulating liquid flavours
with different matrices to keep even critical ingredients (e.g. citrus) stable for up
to 4 years have opened the door for different food and beverage concepts and
have also helped to make the food business more global and more conveniencedriven than it ever was before. The ideal scenario today in flavour and fragrance
research is to find a new molecule whose structure can be patented and used in

a new formulation that helps to improve an application for a consumer-goods
company significantly. The application can be everything from a cosmetic product to a household article to seasoning for a potato chip or a canned coffee product (personal communication within Symrise).
“Sustainable development” describes and stands for the policy of a company of
how it conducts business, treats its employees and resources, and interacts with
society and the environment. It is basically the corporate philosophy around the
pillars ecology, economy, and society. There are many other phrases and acronyms for more or less the same type of activity used. The most common one is
corporate social responsibility (CSR). Sustainable development has become an
important initiative for many industries and companies over the last few years.
Many chemical companies have started a sustainable development initiative
over the last few years. Strong points in there are the environmental/ecological
aspects as well as the workers’ safety programmes. It is a distinct sign that the
industry has learned to deal with its weaknesses in a much more offensive way
than in the first decades after World War II when major environmental crises
represented for the public how the industry operated. One example is the little
town of Seveso in the industrialised north of Italy. It was heavily affected in 1976
when a major chemical accident led to the outbreak of chlorine gas and dioxins
into the environment. Since those years, the chemical industry has invested a lot
and has learned significantly more about how to manufacture even hazardous
materials in such a way that this type of crisis is prevented from happening. In
addition, chemical waste is treated differently, energy is used a lot more economically, and odours are prevented from being released.
The flavour and fragrance industry’s weak points from an environmental/
ecological point of view evidently are, in particular, odour emissions, the handling of chemicals and chemical reactions in manufacturing, and the handling of
wastewater. Every company that has started sustainable development activities
has looked at its weak (vulnerable) points. Their statements show that the sustainable development programme is used to turn weaknesses into strengths or
at least show work being done continuously on these weak points. By looking
at the pillar “society”, another challenge becomes apparent. While it seems to be
obvious for most consumers why pharmaceuticals are needed and beneficial,
the use of flavours for foods and beverages as well as fragrances for various ap-



www.pdfgrip.com
7

plications is not so easily understood by a certain part of the population. Unfortunately, this is sometimes abused by certain authors in common publications
when flavours are described as potential risks for humans and fragrances are
classified as luxury goods or simply unnecessary and annoying. Therefore, it is
important to educate the population about the safety of flavour and fragrances
and the benefits for their use in consumer products. Obviously, this attempt is
complicated by the fact that the flavour and fragrance industry does not usually
deal directly with consumers.
In the following a few activities are listed that can be measured by a flavour
and fragrance company in a sustainable development programme:
• Measurable reduction of energy (water, electricity)
• Measurable reduction of odour emissions
• Improvement of manufacturing processes
• Financial support for charities, aid organisations, and local cultural activities
• Consistent and transparent equal rights and compensation policies throughout the company
• No child labour throughout the company
An important part of such an initiative is the search for sustainable raw materials. There are virtually thousands of different raw materials used in the flavour
and fragrance industry. They typically comprise a combination of chemicals,
essential oils, extracts, distillates, and others. Many essential oils and other ingredients come from tropical countries and/or parts of the world that are (still)
outside of the mainstream business countries, e.g. China, Vietnam, Indonesia,
Côte d’Ivoire (cocoa). The supplier companies of these raw materials for the
flavour and fragrance industry need to make sure that the supply is sustainable,
i.e. specific business practices need to be applied by those companies to maintain and secure the supply. The Chiquita company may serve as a good example
in the food industry [11]. Chiquita is by far the most popular banana in the
world. The company is number 1 in Europe and number 2 in the USA. The total
sales of the Chiquita Company are about US $4 billion. It has been working together for many years with the Rainforest Alliance [12] in order to guarantee the
consumers in nine European countries the certified requirements of an independent environmental organisation. The nucleus of these requirements covers
social, legal, and ecological conditions that the banana farmers in the respective

countries of origin (such as Costa Rica) have to fulfil. Although the Chiquita
bananas cost about twice as much as non-certified ones, the concept seems to be
being well received by consumers.
One of the important tasks of a marketing department in the flavour and fragrance industry is to study consumer and lifestyle trends to help research and
development departments to work on the appropriate long-term projects and
the sales force to target the right customers and product categories. In particular, the fragrance and cosmetics part of the flavour and fragrance business is
dependent on interpreting these consumer trends ahead of time and correctly.


www.pdfgrip.com
8

1 The Flavour and Fragrance Industry—Past, Present, and Future

At the moment the following trends are observable (communication from Symrise’s Marketing departmenrs):
1. Consumer segmentation:
(a) Traditional family continues to alter:
• Single parent homes
• Same-sex families
• Communal living
• Fewer children
• Nestlings/“boomerang” kids
• Longer lifespan
• Multi-cultural families
(b) Breakdown in traditional demographic categories:
• A redefinition of youth:
- Young—tween, teen, early 20s
- Super youths—25–39, refuse to get “old”
- Hip-hops—the new parent, home-owning, trend-setting
- New seniors—trendier more active

• A redefinition of all-American: a global population on the move:
city to city; country to country
(c) Shift in ethnicity of USA:
• Latina population continues to grow (67.5% between 1990 and 2002
vs. 8.1% non-Hispanic)
• Increasing affluence
• Very appearance oriented
- Spend 27% more on cosmetics
- Spend 43% more on fragrance
- Spend $1.6 billion annually on personal care
2. Well-being.
(a) Holistic trend responsible for considerable launch activity:
• Aromatherapy
• Aromachology
• Spa
• Deng-shui
• Ayurveda
• Ki
(b) Satisfying the consumer’s need for feeling restored, rejuvenated, repaired
3. Sensorial branding.
(a) Products that offer a multisensory experience via:
• Unique fabrications


www.pdfgrip.com
9









Translucency
Organic tactility
Colour infusion
Light diffusion
Thermal reaction
Enticing aromas

(b) Satisfying the consumer’s need for feeling stimulated, intoxicated, involved
4. New luxury.
(a) A quality-of-life approach available to the masses:
• Masstige
• Time-sensitive
• Limited editions
• Artisan approach
(b) Satisfying the consumer’s need for feeling pampered, special, extraordinary
5. New simplicity.
(a)Subtle means of self-expression versus bold and blatant branding:
• Designer labels inside not outside
(b) Invisible branding/whisper campaigns/viral marketing/underground
communication:
• Flyers, stickers, creating a buzz
• Street-based promotion
• Calvin Klein’s CRAVE approach to launch
(c) Satisfying the consumer’s need for feeling edgy, unique, “in-the-know”
6. Return to the classics
(a) Glamour has found its way to centre stage:

• Tiffany is opening an Iridesse pearl boutique
• Ladylike designs return to fashion
• Warmth and character returns to home décor
• Elegance, grace, style are en vogue
(b) Move toward:
• Authenticity
• Quality
• Yesteryear
(c) Satisfying the consumer’s need for feeling refined, elegant, glamorous,
pampered


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×