Tải bản đầy đủ (.pdf) (560 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (14.31 MB, 560 trang )


TableofContents
Cover
AdvancesinElectrochemicalScienceandEngineering
TitlePage
Copyright
ListofContributors
SeriesEditorsPreface
Preface
Chapter1:PropertiesofCarbon:AnOverview
1.1OverviewofProperties
1.2DifferentFormsofCarbon
1.3Outlook
References
Chapter2:ElectrochemistryatHighlyOrientedPyrolyticGraphite(HOPG):Towarda
NewPerspective
2.1Introduction
2.2StructureandElectronicPropertiesofHOPG
2.3FormativeStudiesofHOPGElectrochemistry
2.4MicroscopicViewsofElectrochemistryatHOPG
2.5Conclusions
Acknowledgments
References
Chapter3:ElectrochemistryinOneDimension:ApplicationsofCarbonNanotubes
3.1CarbonNanotubes:GeneralConsiderations
3.2StructureandSynthesisofCNTs
3.3StructureofCNTsversusElectrochemicalProperties
3.4StrategiesforthePreparationofCarbonNanotube-BasedElectrodes
3.5ProspectiveWork
References
Chapter4:ElectrochemistryofGraphene


4.1OverviewofGrapheneProperties
4.2PreparationofGraphene
4.3CapacitanceofGrapheneElectrodes


4.4ElectronTransferKineticsatGrapheneElectrodes
4.5ConclusionandFutureDirections
References
Chapter5:TheUseofConductingDiamondinElectrochemistry
5.1Introduction
5.2ElectrodeGeometriesandArrangements
5.3EffectofSurfaceTerminationontheElectrochemicalResponseofBDD
5.4PolycrystallineVersusSingle-CrystalElectrochemistry
5.5ImpartingCatalyticActivityonBDD
5.6ChemicalFunctionalizationofBDDElectrodes
5.7ElectroanalyticalApplicationsofBDD
5.8Conclusions
Acknowledgments
References
Chapter6:ModificationofCarbonElectrodeSurface
6.1Introduction
6.2CovalentModification
6.3NoncovalentModification
6.4FutureDirections
Acknowledgments
References
Chapter7:CarbonMaterialsinLow–TemperaturePolymerElectrolyteMembraneFuel
Cells
7.1Introduction
7.2CarbonasSupportMaterialinFuelCellElectrocatalysts

7.3CarbonasCatalyticallyActiveComponentinFuelCells
7.4CarbonasStructure-FormingElementinPorousFuelCellElectrodes
7.5SummaryandOutlook
Acknowledgments
References
Chapter8:ElectrochemicalCapacitorsBasedonCarbonElectrodesinAqueous
Electrolytes
8.1Introduction
8.2FundamentalsonCarbon/CarbonElectricalDouble-LayerCapacitors


8.3CarbonsandElectrolytesforElectricalDouble-LayerCapacitors
8.4AttractiveElectrochemicalCapacitorsinAqueousSolutions
8.5ConclusionsandPerspectives
References
Chapter9:CarbonElectrodesinElectrochemicalTechnology
9.1Introduction
9.2CommentsontheCarbonsMetinElectrochemicalTechnology
9.3ManufactureofChemicals
9.4WaterandEffluentTreatment
9.5FlowBatteries
References
Chapter10:CarbonElectrodesinMolecularElectronics
10.1Introduction
10.2Fabrication
10.3NovelAllotropesofCarboninMolecularElectronics
10.4ChargeTransport
10.5ConclusionsandProspects
Acknowledgments
References

Chapter11:CarbonPasteElectrodes
11.1Introduction:CarbonPasteElectrodes–TheStateoftheArt
11.2CarbonPasteastheElectrodeMaterial
11.3ModifiedCarbonPasteElectrodes
11.4LatestAchievementsinElectroanalysiswithCMCPEsandCP-Biosensorsand
PerspectivesfortheFuture
References
Chapter12:Screen-PrintedCarbonElectrodes
12.1Introduction
12.2ConductivityofComposites
12.3CarbonPolymorphs
12.4OxygenFunctionalities
12.5ActivatedCarbons
12.6Binder–SolventCombinations
12.7PVDFProperties


12.8PVDFSolubility
12.9FlexibleSubstrates
12.10ScreenPrintingProcess
12.11ScreenPrintingMaterials
12.12InkFlow
12.13SubstrateWetting
12.14CommercialInkAdditives
12.15BinderPercentage
12.16MultilayeredElectrodes
12.17IRDrop
12.18ArealCapacitance
12.19EquivalentCircuit
References

Index
EndUserLicenseAgreement

ListofIllustrations
Chapter1:PropertiesofCarbon:AnOverview
Figure1.1Controlofthegrapheneplasmonresonancefrequencybyelectricalgating
andmicroribbonwidths.(a)AFM(atomicforcemicroscopy)imagesofgraphene
microribbonswithwidthsof1,2,and4µm.Colorbaroftheheightisshownonthe
right.(b)Fermienergy(EF)dependenceofthegrapheneplasmonfrequency (top
axisgivesrelateddependenceonchargedensity|n|1/2)ofribbonswiththreedifferent
widths.
Figure1.2Universallightabsorbanceandopticalconductivityofgraphene.(a)
SchematicofDirac-coneandinterbandopticaltransitionsingraphene.(b)Optical
absorbance(leftaxis)andopticalsheetconductivity(rightaxis)ofthreegraphene
samples.Thespectralrangeisfrom0.5to1.2eV.Theblackhorizontallineshowsthe
universalabsorbancevalueof2.293%perlayer,withthevariationwithin10%.(c)
TheopticalabsorbanceofgrapheneSample1andSample2overasmallerspectral
rangefrom0.25to0.8eV.
Figure1.3Ramanspectrumofgrapheneat0V(appliedbiasvoltage),excitedbya2.33
eVlaserradiation,inanelectrochemicalenvironment.Theasterisks(*)indicate
Ramanbandsoftheelectrolyte.
Figure1.4TheRamanscatteringprocessesoftheG,D,D′,andG′bandsofgraphene.
Figure1.5RamanspectraoftheG′bandofgraphenewithdifferentnumbersoflayers.


Theexcitationlaserwavelengthis514nm.
Figure1.6TheschematicillustrationofanexperimentalsetupofinsituRaman
spectroelectrochemistry.Thesample(12C/13Cbilayergrapheneinthissketch)isonthe
substratewithionicgating(lightgreycylinders),withtwoelectrodeprobesmadeof
AgandPt.ThebackgatingisthroughtheAumetalelectrode.Thesetupisplacedunder

theRamanspectrometertoachieveinsituRamanspectroscopy.
Figure1.7ThechangeofDbandwithelectrochemicaldoping.(a)Ramanspectraof
defectivegrapheneatdifferentFermienergies(EF),measuredunder633nmlaser
excitation.(b)ThenormalizedintensityoftheDbandasafunctionofFermilevel,or
chargecarrierconcentrationat514and633nmlaserexcitations.
Figure1.8InsituRamanspectroelectrochemistrydatafortheGandG′bandsof
grapheneexcitedby2.33eVlaserirradiation.TheheavyblacktraceisforV=0
appliedvoltage.
Figure1.9TheRamanspectraofbilayergraphenewiththetwolayersof:13C/12C,both
13C,andboth12C.Thegraphenewiththe13Cisotopehasred-shiftedGandG′peaks,
comparedto12Cgraphene.
Figure1.10Energybanddiagramanddensityofstates(DOS)ofacarbonnanotube.
The1DvanHovesingularitiesgiveahighDOSatwell-definedenergies.
Figure1.11(a)Acarbonnanotubedefinedbythechiralvector ,whichis
perpendiculartothenanotubeaxis.Here, isthechiralangle,and and arethe
unitvectorsofgraphene.(b)Possiblechiralvectors(n,m)ofcarbonnanotubes(see
text).Different(n,m)chiralitiesresultindifferentphysicalproperties,including
metallic(largedots)andsemiconducting(smalldots)nanotubes.
Figure1.12Threetypesofcarbonnanotubes:(a)armchair,(b)zigzag,and(c)chiral.
Thedefinitionofnanotubetypesisaccordingtotheorientationperpendiculartothe
nanotubeaxis.
Figure1.13(a)RamanspectraoftheGbandatseveralpotentialsappliedtoaSWCNT
bundle.(b,c)VariationoftheG+bandandG−bandfrequency,respectively,withthe
appliedpotentialforthreedifferentelectrolytesolutions.
Figure1.14Katauraplot[81–83],showingtherelationshipbetweenelectronic
transitionenergiesandtheSWCNTdiameters.Eachpointontheplotshowsan
opticallyallowedelectronictransitionenergyEii,whichistheenergyseparation
betweenvanHovesingularitiesintheconductionbandtothevalenceband.Crosses
representsemiconductingSWCNTs(labeled“S”)andcirclesrepresentmetallic
SWCNTs(labeled“M”).

Figure1.15VariationoftheC−Cbondlength(estimatedfromGbandvariation)with
electrochemicalchargetransfer(fc)inducedonthenanotubes.


Figure1.16GNRswithdifferentchiralorientations:zigzagandarmchair.
Figure1.17DevelopmentofedgestructuresingraphenenanoribbonsusingJoule
heatinginsideaTEM(transmissionelectronmicroscope).(a)Graphenenanoribbon
withzigzag–armchairedges.Theblackarrowsindicatethejunctionbetweenzigzagand
armchairedges.WiththeincreasedtimeofJouleheating(a–d),thezigzag-armchair
junctionpositionmoves.ThesketchesontheleftandrightoftheTEMimages(a–d)
indicatethegraphenenanoribbonstructuresbeforeandafterJouleheating,
respectively.Scalebarin(a):2nm.
Figure1.18Unzippingacarbonnanotubetoformagraphenenanoribbon.
Chapter2:ElectrochemistryatHighlyOrientedPyrolyticGraphite(HOPG):Towarda
NewPerspective
Figure2.1(a)SchematicsofthegraphitecrystalstructureofAB-stackedgraphiteand
thecorrespondingBrillouinzoneofbulkgraphite,togetherwiththelabelsforspecial
symmetrypoints.(b)SideviewsforBernal(ABA)stacking(left)andrhombohedral
(ABC)stacking(right).
Figure2.2AtomicresolutionSTMimagesofthesurfaceof(a)graphiteand(b)
graphene.Whilethegraphitesurfaceshowsatriangularstructure,thegraphenesurface
exhibitsthehoneycombstructurewithallsixatomsinthehexagonverticesvisible.
Figure2.3AFMimagesoffreshlycleavedHOPGsurfacesofdifferentgrades,
highlightingthesignificantdifferencesintopographicalstructure.Notethedifferences
inscalebars(lateralandheight).
Figure2.4(a)AFMimagesofBPPGand(b)Scanningelectronmicroscopyimagesof
EPPGatdifferentmagnifications.
Figure2.5RamanspectraacquiredondifferentHOPGgrades((a)AMand(b)SPI-3,
(c)BPPG,and(d)EPPG).
Figure2.6(a)Graphiteelectronicbandstructurealonghigh-symmetrylinesinthe

Brillouinzone.(b)ElectronicDOSofgraphite.(c)CurvesrepresentingtheDOSfor
pyrolyticgraphitedeterminedbyGerischerusingcapacitancemeasurements,compared
withthecurvesobtainedbytheSWMcCandJDmodelsforenergybandsneartheH-K
axis.
Figure2.7(a)STMimagesandSTSspectranearmonoatomicstepsofanHOPG
samplewithzigzagedge(top)andarmchairedge(bottom).Thecolorkeyonthe
spectraassignsthelateraldistanceofthetipfromthestepedge.(b)STSspectraof
grapheneandgraphite,showingafinitedifferentialconductanceattheneutralitypoint
forgraphite,consistentwiththefiniteDOS.
Figure2.8(a–d)SetofSTMimagesand(e–h)thecorrespondingSTSspectraof
HOPGsamplesthatexhibitMoirepatternsduetotheexistenceofatwistangle
(indicated)betweenthetopgraphenelayerandthelayerimmediatelyunderneath.


Figure2.9(a)(i)Ramanspectraoflaser-treatedHOPG(threepulses,50MWcm−2):
(A)offthelaserand(B)onthelaserspot.(a)(ii)CorrespondingCVsofFe(CN)63−/4−
(1MKCl),200mVs−1,onuntreated(uppercurve)andlaser-treated(lowercurve)
AM-gradeHOPG.(b)(i)Ramanspectraobtainedinairafterelectrochemically
pretreatingHOPGfor2minin0.1MKNO3solutionatdifferentpotentials,1565cm−1
peakisdioxygen:(A)1.6V;(B)1.85V;and(C)1.95VvsAg/AgCl.(b)(ii)
CorrespondingCVsofFe(CN)63−/4−(1MKCl),200mVs−1onAM-gradeHOPGafter
1.85Velectrochemicalpretreatment(ECP)(uppercurve)and1.95VECP(lower
curve).TheintensityoftheRamanDband,whichindicatesedgeanddefectsites,
yieldscomparableresultsforthetwosurfaceactivationprocedures,laseractivation
andECP,withECPgeneratingmoresurfaceoxidesthanlaseractivation.
Figure2.10Log–logplotofk0for“validated”AM-gradeHOPG(triangle)andlaseractivatedGC(circles)versuskexcforeightredoxcouples.Thehorizontallineindicates
theinstrumentallimitfork0determination,thedashedlineistheleast-squarefitforthe
HOPGdata,withslope=0.29andthesolidlineisfromtheproposedsimpleformof
therelationshipbetweenk0andkexcpredictedbyMarcustheory.Redoxsystemsare(1)
IrCl62−/3−,(2)Ru(NH3)63+/2+,(3)Co(phen)33+/2+,(4)methylviologen,(5)

Fe(phen)33+/2+,(6)Fe(CN)63−/4−,(7)Co(en)33+/2+,and(8)Ru(en)33+/2+,wherephenis
phenanthrolineandenisethylenediamine.
Figure2.11(a)Observedk0forFe(CN)63−/4−,calculatedfromCVmeasurementswith
theNicholsonmethod[155](insetshowssamedatawithalogarithmicordinate).(b)
Observedcapacitance,C0,forlaser-modifiedHOPG/aqueouselectrolytes,determined
fromsemi-integralvoltammetry[154],asafunctionoflaseractivationpowerdensity.
EachvoltammogramwastakenaftercleavageoftheHOPGsurfaceandthree9nslaser
pulsesinair.
Figure2.12(a)CVsrecordedatEPPGandbasalplaneHOPG.(b)Comparisonofthe
basalplaneHOPGvoltammogramswiththebestfittolineardiffusionCVsimulations
fortheoxidationof1mMFe(CN)64−(1MKCl)at1Vs−1.
Figure2.13CVforthereductionof1mMFe(CN)63−inaqueous0.1MKClsolutionat
ascanrateof75mVs−1:(a)ZYH-gradeHOPGelectrodeshowsahighlyirreversible
processand(b)ZYH-gradeHOPGelectrode,whichwashand-polishedtocreateedgeplanedefectsites,displaysbothareversibleandirreversibleprocess.(c)Relationship
ofΔEpfromCVstothepercentageofedgeplanecalculatedfromk0(withtwovalues
indicatedbyandΔ)and C0(▪).(d)Theindividualsecondtofifthharmonicpeak
currents(2–5ωt)fromACvoltammetry,withinsetshowingthecloserviewforthe
low-leveledge-planedefectregions.
Figure2.14CVsfor1mMFe(CN)63−/4−redoxcouple:(a)(i)oxidationin1MKCl


solutionat1.0Vs1onAM-gradeHOPG;(b)(i)oxidationin1MKClsolutionat1.0V
s1onSPI-1-gradeHOPG;and(c)(i)reductionin0.1MKClsolutionat75mVs1on
ZYH-gradeHOPG.(a)(ii)(c)(ii)CorrespondingAFMimagesoftheHOPGsurface
showingtypicalstep-edgedensitiesandcoveragefordifferentgradesofHOPG
samples.
Figure2.15(a)SchematicoftheSMCMsetup,showingtheone-electronoxidationof
FA+toFA2+atasubstrateelectrode.(b)Simulationsshowingtheinfluenceofkinetics
onSMCMCVs,forapipetteof2àmdiameterand7.5taperangle.Black:Nernstian
response.KineticcasesuseButlerVolmerequations(=0.5).Red:k0=0.1cms1,

Green:k0=0.01cms1,Blue:k0=0.001cms1(5mMredoxspecies,D=1ì105
cm2s1),istheoverpotential.(c)Experimental(black)andsimulated(Nernstian,
green;k0=0.01cms1,=0.5,red)CVsforapipetteof580nmdiameterwitha
solutionof2mMFA+(D=6ì106cm2s1).
Figure2.16(a)SchematicofthesimulationgeometrymodelforaNafion-coatedHOPG
surface(i),wherethenumbersareindicativeofthefilmsolutioninterface(1),
periodicboundariesfromwhichthesteparrayresponsecanbedetermined(2a,2b),
step-edgeplane(3),andbasalplane(4a,4b),respectively,andsimulatedconcentration
profilesforaNafion-Ru(bpy)32+(D=4.7ì1011cm2s1)filmatthehalf-wave
potentialfromaCVatascanrateof10mVs1(ii,iii)and1Vs1(iv,v).Thebasal
planewasassumedtobeinert(k0=0cms1;ii,iv)andactive(k0=1ì104cms1;
iii,v),withthestep-edgeactivityatk0=1ì104cms1.CVsrecordedatascanrate
of0.5Vs1onanSPI-1-gradeHOPGsurface,withadepositedthinNafionfilm
incorporating(b)Ru(bpy)32+and(c)Ru(NH3)63+,wheretheexperimentaldataare
showninblack,togetherwithsimulationswithbasalplanekineticseitherreversible
(red),inert(k0=0cms1,green),oractivewitharateconstantofk0=1ì104cms1
forRu(bpy)32+andk0=4.5ì105cms1forRu(NH3)63+(blue).
Figure2.17(a)SchematicoftheSECCMsetupandanscanningelectronmicroscopy
imageofatypicaltipemployed.(b)SECCMmapsfortheelectro-reductionof2mM
Ru(NH3)63+onZYA-gradeHOPG,showing(i)topography,(ii)ACcomponentofthe
conductancecurrent,(iii)surfaceelectroactivity,and(iv)ahistogramofallthe
electroactivity(redoxcurrent)pixelswithrespecttotheaverageactivity.(c)SECCM
surfaceelectroactivitymap(left)for1mMRu(NH3)63+reductionatAM-gradeHOPG,
withbothsurfacecurrent(green)andbarrelcurrent(blue)shownforatypicalline
acrossseveralsteps.(d)Surfaceelectroactivitymapfortheoxidationof2mM
Fe(CN)64(i),withtheaveragecurrentofeachlineintheimageshownin(ii).(e)
Normalizedlinearsweepvoltammogramsfortheoxidationof2mMFe(CN)64on
freshHOPG(black)andagedHOPGafter1hexposureinair(blue),withascanrate
of100mVs1.



Figure2.18(a)SchematicforfeedbackmodeofSECM.SECMsteady-statenormalized
currentdistanceapproachcurveswithagolddiscultramicroelectrode(UME)tip
(radius6àm)forFe(CN)64reductiontoward(b)HOPGand(c)glassycarbon,where
iisthecurrentandi()isthebulkcurrent.Thenormalizeddistanceistheabsolutetip
substratedistancedividedbythetipradius.
Figure2.19(a)Topographicaland(b)currentfeaturesonthesurfaceofHOPG
obtainedfromSECMAFM,withthecorrespondingcross-sectionalprofile(c)and(d)
alongthelinemarkedin(a)and(b),respectively.(e)Verticaldeflectionand(f)current
responseoftheupperareaof(a)and(b),andthenumbersindicatedaredifferent
supportpotentials,changingfromthewhiteline.(g)SimulationofSECMwitha
conicalelectrode,showingthecurrentprofilesacrossstep1in(a).Theexperimental
response(redline),thecurrentresponsewitha100timesenhancedreactionrateatthe
stepedge(blueline)andwithoutenhancedreactionrate(greenline).Notethesmall
changeinabsolutecurrentonthey-coordinate.
Figure2.20CVsfortheoxidationof1mMFe(CN)64in0.1MKClsolution,at0.1Vs
1,afterafreshlycleavedHOPG(SPI-1)surfacewasleft(a)incontactwithsolution
or(b)inair,aftercleavagefor0min(black),1h(red),and3h(green),and(c)after
leavingasampleinairfor24haftercleavage.
Figure2.21ConductiveAFMimages(5ì5àm)ofanHOPG(SPI-1)surfaceshowing
the(i)heightand(ii)conductivity(a)immediatelyaftercleavageand(b)24hafter
cleavage.TheconductiveAFMiVcurvesshownwererecordedontheterrace
locationsmarkedin(a)(ii)and(b)(ii).
Figure2.22(a)SECCMlinearsweepvoltammogramoftheelectro-oxidationof100
MDA(0.15Mphosphatebufferedsalinecontaining150mMNaCl(pH7.2)).Maps
of(b)surfaceactivity,(c)DCconductancecurrent,and(d)ACcomponentofthe
conductancecurrentobtainedwithSECCMsetup,togetherwith(e)anAFMimagein
thesamearea.
Figure2.23MacroscopicCVsfortheoxidationof1mMDA(a)(i),(b)(i)and1mM
EP(a)(ii),(b)(ii)onfreshlycleavedsurfacesofZYA-andSPI-3-gradeHOPG,ata

scanrateof0.1Vs1.
Figure2.24(a)SchematicoftheFSCVSECCMsetupwhere10sequentialCVscans
werecarriedoutineachofaseriesofspotsonanHOPGsurface,withholdtimesof
50ms,100ms,250ms,0.5s,1s,and5sbetweeneachCV.(b)FSCVsforthe
adsorptionof1MAQDSin0.05MHClO4solution,recordedat250msintervals
(holdtime)withascanrateof100Vs1,atAM-gradeHOPG.(c)Thefractional
coverageofAQDSandcorrespondingchargeindifferentpartsofanAM-gradeHOPG
surfaceasafunctionoftime,withrespecttothedifferentholdtimes.Solidlineisthe
simulatedbehaviorfordiffusion-controlledadsorption.(d)TypicalAFMimage(ex
situ)foranadsorptionspotonanAM-gradeHOPGsurfacetakenafterabout10s,


alongwitha3ì3àmhigherresolutionimage,withtheapproximatedropletfootprint
outlinedinwhite.(e)Percentageofstepedgesfoundwithinsixadsorptionspots,
whereFSCVmeasurementsweremade(atdifferenttotaladsorptiontime)andthe
observedfractionalcoverageofelectroactiveAQDS.
Figure2.25(a)SchematicshowingthemodificationofanHOPGsurfacewithan
electrogenerateddiazoniumradical.(b)AFMimageofthedepositionarrayonHOPG.
CVsof0.1mMdiazoniumin50mMH2SO4atthesurfaceof(c)AM-gradeand(d)
SPI-3-gradeHOPGatascanrateof0.2Vs1.
Chapter3:ElectrochemistryinOneDimension:ApplicationsofCarbonNanotubes
Figure3.1(a)Schematicrepresentationoftheroll-upvectoroverthegraphenesurface,
whichdefinesthedifferentCNTstructures.(b)SWCNTarmchair,zigzag,andchiral.
Figure3.2(a)TEMmicrographofas-synthesizedSWCNT.(b)TEMmicrographofa
samplecontainingbothMWCNTandbCNT.(twomagnificationsaredisplayedatright
andleftpanels,respectively).
Figure3.3Cyclicvoltammogramsin1mM
over(a)covalentlyalignedand
(b)drop-coatedSWCNT-modifiedAu/cysteamineelectrode.Supportingelectrolyte:
0.05MphosphatebuffersolutionpH7.0and0.05MKClsolution.

Figure3.4(a)SchematicrepresentationoftheprocedureforpreparingtheCNT
electrodeswithtipexposed(CNT-T)orsidewall(CNT-S)accessibletoelectrolyte.
CVsof2.0mMH2O2(b,c),and2.0mMascorbicacid(d,e)recordedinphosphate
buffersolutionpH6.5attheCNT-S(uppercurvesinbandd),O-CNT-S(lowercurves
inbandd),CNT-T(uppercurvesincande),andO-CNT-Telectrodes(lowercurves
inc,e).ThedottedcurveswererecordedatthecorrespondingCNTelectrodesinthe
absenceoftheelectrochemicalprobemolecules.Scanrate:0.100Vs1.
Figure3.5Valuesofchargetransferresistance(Rct)obtainedbyfittingwithan
equivalentcircuitoftheimpedancespectraperformedin
forseveral
electrodes(fromlefttoright):EPPG,bCNT,SWCNT,MWCNTwithdiameterequalto
30,50,and140nm,graphiteandBPPG.Theinsetshowsvaluesatalowerresistance
scale.
Figure3.6SEMmicrographsofglassycarbondisksmodifiedwithdifferent
dispersionsofMWCNT:(a)1.00mgml1MWCNTin1.00mgml1GOxsolution
preparedin50:50(v/v)ethanol/water;(b)1.00mgml10MWCNTin1.00mgml1
PEIsolutionpreparedin50:50(v/v)ethanol/water;(c)1.00mgml1bCNTin100
ppmdsDNAsolutionpreparedin50:50(v/v)ethanol/water(inset:bCNTindsDNA
solutionpreparedinwater);and(d)1.00mgml1MWCNTin0.25mgml1Polyhis
solutionpreparedin75:25(v/v)ethanol/acetatebuffersolutionpH5.00(inset:
MWCNTin2.00mgml1Polyhis).
Figure3.7SECMsurfaceplotimagesof(a)GCE/MWCNT-H2O,(b)GCE/MWCNT-


DMF,(c)GCE/MWCNT-CHI,and(d)GCE/MWCNT-Nafmodifiedwith1.0mgml1
ofCNTdispersion.Experimentalconditions:5.0ì104MFcOHsolutionin0.050M
phosphatebufferpH7.40.Imageparameters:1àms1tipscan,Etip=0.500V,Esubstrate
=0.000V.
Chapter4:ElectrochemistryofGraphene
Figure4.1Overviewfortheproductionmethodsofgraphene[19].

Figure4.2AschematictoshowthepreparationoftheMEgraphenesamplesand
transferprocess[22].
Figure4.3ShowingtheexperimentalsetupusedbyLiuetal.[34]forthe
electrochemicalexfoliationofgraphite.
Figure4.4SchematicofCVD-growngrapheneonNiandCusubstrates[54].
Figure4.5Capacitancepotentialcurvesforthebasalplaneofstress-annealedgraphite
forarangeofconcentrations(0.9,101,102,103,104,and105Mfromtopto
bottom)inNaF(pH=6)[69].
Figure4.6Schematicoftheelectrodefabrication[3].
Figure4.7Acomparisonforthe(a)calculatedand(b)measuredcapacitanceof
monolayergraphenewheneitheroneortwosidesareexposedto4MH2SO4
electrolytesolution.
Figure4.8Cintversuspotentialplotsforelectrodespreparedwithonetofivelayersof
grapheneina6Mpotassiumhydroxideaqueouselectrolyte[88].
Figure4.9Effectofn-dopingoncapacitanceofgraphenewithvariousconcentrations
using6Mpotassiumhydroxideaqueouselectrolyte.
Figure4.10(a)Shapeofthevoltammetryforradialandlineardiffusion.(b)Schematic
diagramshowingthedevelopmentofthediffusionlayerwithincreasingtime(orcharge
passed),thatis,from(i)to(iii).
Figure4.11Simulateddependenceofthevoltammetricshape(dimensionlesscurrentvs
potential)onthedomainsizeofaheterogeneoussurface.Thek0oftheslowand
fastkineticsdomainswere1ì104cms1and1ì102cms1,respectively.
Figure4.12(a)ComparisonofCVsobtainedforopen-edgegraphenenanofibers(oSGNFs)andfolded-edgegraphenenanofibers(f-SGNFs).SchematicandTEM
micrographsofthe(b)o-SGNFand(c)f-SGNF.
Figure4.13(a)Microelectrode-shapedvoltammogramsobtainedonthegraphenedecoratedSAMAuelectrode.(b)Schematicofthemicroelectrodefabrication.
Figure4.14(a)SchematicofthemonolayerCVDgraphene(grey,labelled)with
induceddefects(lightgreyzonewithdashedoutline)depositedonaSi/SiO2substrate


(black).Panels(b)and(c)showSECMmapsofthegraphenewithinduceddefectsand

thesameareapassivatedusingo-phenylenediamineelectropolymerization,
respectively.
Figure4.15(a)SchematicoftheSECCMsetup,(b)voltammetryobtainedona
graphenesurface.Scannedareawithvariedflakethicknessesofdifferentlightcontrast
andelectrochemicalactivityisshownas(c)opticalmicrographand(d)corresponding
SECCMmap.Panels(e)and(f)showcorrelationbetweenthefeedbackcurrentor
HETrateandthelightcontrast(numberofgraphenelayers),respectively.
Figure4.16Schematicoftheedge-plane(a)andbasalplane(b)monolayergraphene
device,fabricatedusingpoly(methylmethacrylate)(PMMA)andepoxyresin(ER).
Figure4.17(a)SchematicoftheMEgraphenemonolayerelectrodepreparation.(b)
Microelectrodevoltammetricresponseobtainedonmono-,bi-,andmultilayer
grapheneflakes,normalizedtotheflakeradius.
Figure4.18(a)Photographand(b)theschematicofthemicromanipulatorsetupused
fordepositionofliquidmicrodropletsonthesurfaceofgrapheneelectrodes.
Figure4.19(a,b)Scanningelectronmicrographs,(c)transmissionelectronmicrograph,
and(d)electrondiffractionpatternofthe“3Dgraphene”catalyst.Panels(e)and(f)
showthephotovoltaicandvoltammetriccharacterizationofthematerialpreparedusing
threedifferentreactiontimes.
Chapter5:TheUseofConductingDiamondinElectrochemistry
Figure5.1(a)Roomtemperatureresistivityasafunctionofborondoping
concentration.(Takenwithpermissionfrom[14]).(b)p-typelow-dopedBDDat(i)
absolute0K,nocarriersarethermallyexcitedfromthevalencebandtoacceptor
states;thediamondisaninsulatorandtheFermilevel,EF,ismid-gapand(ii)nonzero
temperature;thenumberoffreecarriersinthevalencebandwilldependonthe
concentrationandtheionizationenergyoftheboronacceptors(EA)andthe
temperature,yieldinganactivatedelectricalresistivityintermediatebetweenthatofan
insulatorandthatofametal;theFermilevelwillmovedownwardtowardthetopof
thevalenceband.(iii)p-typeheavilydopedBDD( 1020Batomscm−3),whenthe
impuritiesarecloseenough,quantumoverlappingoftheirwavefunctionsresultsin
delocalizationleadingtometallicbehavioratzerotemperaturewithaFermilevel

pinnedinsidetheimpurityband;themetal–insulatortransitiontakesplace.(iv)Very
highdopinglevels>1020Batomscm−3;screeningoftheimpuritiesmodifiesthe
acceptoractivationenergyandtheintrinsicbandgapenergywillreduce.
Figure5.2(a)Schematicshowinggrainstructureofathickpolycrystallinediamond
film.Differentialboronuptakeindifferentgrainsindicatedbydarkandlightregions.
(b)Processingofsampletoremovegrowthandnucleationsurfaces.(c)Resultant
sampleforinvestigation.Notethecomplexinterconnectionofgrainswithdifferent
dopantdensities.


Figure5.3Differentexperimentalarrangementsusedbyresearcherswhenworking
withBDDelectrodes.(a)Forthin-filmBDDstillattachedtothegrowthsubstratean
glasselectrochemicalcellcanbeused.(AdaptedfromRef.[35].)(i)CuorAlmetal
current-collectingplate;(ii)thediamondfilmelectrode;(iii)theVitonO-ringseal;(iv)
theinputfornitrogenpurgegas;(v)carbonrodorPtcounterelectrode;and(vi)
referenceelectrode.(b)PreparationofBDDfree-standingelectrodes.(Adaptedfrom
Ref.[36]withpermission.)(i)LasermicromachiningisusedtocuttherequiredBDD
electrodegeometryfromaBDDfree-standingwafer;(ii)hereacylinderisrevealed.
Theelectrodeisohmicallycontacted,sealedinglass,andpolishedflattorevealthe
electrodestructureintheleftof(iii).Alsoshownareconventionalpolymer-sealedPt,
Au,andglassycarbonelectrodes.(c)Scanningelectronmicroscopy(SEM)imagesofa
nanoelectrodearray.(AdaptedfromRef.[37].)(i)Overviewofthedesignwith
distancesof10µmbetweenneighboringelectrodeswithhexagonalorder(indicatedin
red)and(ii)recesseddiamondelectrode,theinsulatingdiamondlayerisclearly
visible.(d)SchematicviewsofatopcontactedBDDmultiplyaddressableband
electrodedevice,wheretheBDDbandelectrodeslieoninsulatingsiliconoxide.
Figure5.4All-diamondcoplanarmicro-andmacroelectrodes.(a)Multiple
microelectrodearrayformedfrommachiningpillarstructuresinfree-standingBDD,
overgrowingwithinsulatingdiamond,andthenpolishingflattorevealacoplanar
structure.SEMsideonviewofcross-sectionedmicroelectrodearray.(TakenfromRef.

[50]withpermission.)(b)AtomicForceMicroscopy(AFM)topographyimageofone
oftheelectrodesinthearray;thelocationoftheBDDmicrodiskultramicroelectrodeis
clearlyvisible.(TakenfromRef.[28]withpermission.)(c)Top:multipleindividually
addressablemicrobandarrayelectrodes,ofwidth200µm,formedbygrowingBDD
intotrenchstructuresininsulatingdiamond.TheNDCbackcontacttoeachelectrodeis
visible.Bottom:topcontactedBDDring-diskelectrodeformedusingthesame
procedure.Thediameterofthediskelectrodeis3mm.
Figure5.5(a)SEMofanas-grownMCBDDelectrode.(TakenfromRef.[62]with
permission.);(b)Left:SEMoflappedsurfaceofMCBDD;Right:corresponding
Ramanmapofthesamearea.Forboth,zonesofdarkerintensitycorrespondtomore
heavilyboron-dopedregionsofthesurface.(TakenfromRef.[18]withpermission.)
(c)SEMofthin-filmBDDNCand(d)SEMofthin-filmBDDUNC.
Figure5.6CVsrecordedin0.1MKNO3atascanrateof0.1Vs−1forhighlydoped
NDC-freefree-standing,microcrystallineBDD(top),NDC-containingfree-standing,
microcrystallineBDD(seconddown),glassycarbon(thirddown),andplatinum
(bottom).TheCVshavebeenplottedondifferentscalesandverticallyoffsetfor
clarity.
Figure5.7Cyclicvoltammetriccurvesforalowerquality,NDC-containingthinfilm
diamondfilmelectrodein0.1MH2SO4beforeandafteracidwashingand
rehydrogenation.Scanrate,0.1Vs−1.


Figure5.8(a)Ramanspectraofthe[100]facetofB-dopedindividualdiamond
crystalsrecordedwithasingle-mode514.5nmlineofanAr-ionlaseratlowpower
(about5mW).“B/C”referstoB/Cinthegasphase.(TakenfromRef.[73]with
permission.)AtlowB,aNDCGpeakisevidentat 1500cm−1;astheBconcentration
increases,thediamondphononpeakbecomesmoreasymmetricandreducesinsize.(b)
VisibleRamanspectrumforaboron-dopedNCdiamondthinfilmatlaserwavelength
=532nmandpower=50mW.Integrationtime=5s.
Figure5.9(a)SchematicrepresentationshowingthepositionoftheRu(NH3)63+and

FcTMA+coupleswithrespecttovalence(EVB)andconduction(ECB)bandsforboth
O-andH-terminatedsemiconductingBDD.H-termination(O-termination)isknownto
induceanegative(positive)electronaffinity,withavalueof−1.3eV(+1.7eV)
measuredinvacuum[84].ThepresenceofwatermoleculesscreeningtheC−H(C−O)
surfacedipoleisexpectedtoreducethevalueoftheelectronaffinity(χ)towardlessnegative(positive)values.Wehavechosenavalueofapproximatelyχ=−1.0eVandχ
=+1.3eVforH-andO-terminatedsurfaces,respectively.Intheelectrolyteregion,the
leveloftheAg/AgClreferenceelectrode(Eref)isshown,andallappliedvoltagesare
referredtoitsenergy.(b)CVsperformedwitha1mmdiameterdiskelectrodeof
freestandingpolishedmicrocrystallineBDDelectrodeofdopantdensity
(blackline),
(redline),mid-1019(blueline),
(pinkline),and
−1
(greenline)atascanrateof0.1Vs for(i)theoxidationof1mMFcTMA+
and(ii)thereductionof1mMRu(NH3)63+in0.1MKNO3.(TakenfromRef.[17]with
permission.)Theresultingpeak-to-peak(ΔEp)separationsaregivenforthedifferently
dopedelectrodesinthetwodifferentredoxmediatorsolutions.
Figure5.10Schematicillustrationof(a)outer-sphereand(b)inner-sphereredox
process.OHPistheouterHelmholtzplaneandIHPistheinnerHelmholtzplane.
Figure5.11(a)Schematicofthehydrogenateddiamondsurfaceincontactwithawater
layerasitformsinair.(b)Evolutionofbandbendingduringtheelectrontransfer
processattheinterfacebetweendiamondandthewaterlayer.VBM=valanceband
maximum,CBM=conductionbandmaximum,EF=Fermilevel,μe=chemical
potentialoftheliquidphase.
Figure5.12(a)ContactanglesforH-andO-terminatedBDD[102](b)XPSC1s
spectraofsemiconductingH-plasma-treatedBDD(i)beforeand(ii)after
electrochemicaloxidationat1.5Vfor10minin0.1MKH2PO4[108].
Figure5.13CVcurves.(a)H-terminatedlow-doped( 1018)BDDelectrodein10mM
Fe(CN)63−/4−with1MKCl,scanrate=25mVs−1.(b)O-terminatedlow-doped
( 1018)BDDelectrodein10mMFe(CN)63−/4−with1MKCl,scanrate=25mVs−1.

(c)O-terminatedhigh-doped( 1020)BDDelectrodein3mMFe(CN)63−/4−with1M
KCl,scanrate=20mVs−1.


Figure5.14(a)SchematicillustratingSECMSG-TCmode.Theheterogeneouslyactive
BDDelectrodeisbiasedatapotentialtoelectrolyzetheredoxcouple(OxtoRedor
RedtoOx).Thetipisbiasedatasuitablepotentialtoconverttheelectro-generated
speciesbacktoitsoriginalformatadiffusion-controlledrate.Variationsintipcurrent
reflectvariationsintheunderlyingETcapabilitiesofthesurface.Infeedback,thetipis
biasedtoelectrolyzetheredoxcoupleandthesubstrateleftunbiasedorbiasedtoturn
overtheelectro-generatedformoftheredoxcoupleatadiffusionlimitedrate.(b)
SECMSG-TCimageofpolishedfree-standingMCBDD,
,for
2+
3+
substrategenerationofRu(NH3)6 fromRu(NH3)6 ata25-µm-diameterimagingtip.
(TakenfromRef.[28]withpermission.)(c)SECMfeedbackimageofpolishedfreestandingMCBDD,
,recordedwitha2µmtipelectrodebiasedata
3+
potentialtoconvertRu(NH3)6 toRu(NH3)62+.(TakenwithpermissionfromRef.
[121].)(d)ScanningRamanimage(left)andintermittentcontactSG-TCSECMimage
(right)ofthesurfaceofpolishedfree-standingMCBDD,
,witha2µmtip
2+
+
electrode,biasedatapotentialtoconvertFcTMA toFcTMA .
Figure5.15(a)Boron-dopedfilmwithitsHPHTsubstratebeforecuttingandpolishing.
(b)Freestandingboron-dopeddiamondfilm.
Figure5.16SEMandAFMimagesofdifferentmetalNPsdepositedunderdifferent
conditionsonBDD.(a)SEMimagesofflower-like(left)andsphericalgoldNPs

electrodepositedonMCBDDbyvaryingtheelectrodepositionconditions.(Takenfrom
Ref.[143]withpermission.)(b)SEMofcitrate-cappedgoldNPsformedonas-grown
BDDbythelayer-by-layerassemblyprocedure.(TakenfromRef.[154]with
permission.)(c)SEMofplatinumnanoparticleselectrodepositedonBDD
microelectrodesaftertwodepositioncycles.(TakenfromRef.[149]withpermission.)
(d)AFMimageofnickelhydroxidenanoparticlesdepositedonfree-standingpolished
MCBDDbyelectrochemicallygeneratingOH−inthepresenceofNi2+.
Figure5.17CVresponsesof0.1MphosphatebuffersolutionpH4atascanrateof50
mVs−1intheabsenceandpresenceof1mMarsenic(III)at(a)BDDelectrode,(b)Irwireelectrode,and(c)Ir-BDDelectrode.
Figure5.18(a)Descriptionofthesuccessivediamondsurfacefunctionalizationsteps:
first,aminationwithrfplasma,thenaminolysiswith4-pentynoicacid,ynecoupling
usingathiolatedoligonucleotide.(ModifiedfromRef.[180]withpermission.)(b)
IllustrationofthemultistepfunctionalizationofBDDelectrodes:first,diazotization,
thenelectroreductionofthediazoniumsaltforelectrograftingofphenylazidemolecules
andfinallyclickcycloadditionbetweentheimmobilizedphenylazidemoleculesandssDNA(fluorescentlylabeled).
Chapter6:ModificationofCarbonElectrodeSurface
Scheme6.1Reductiveelectrograftingofaryldiazoniumonacarbonsurface.
Figure6.1CyclicvoltammogramsrecordedataGCelectrodewithoutDPPH(left)and


with1mMofDPPH(right)inasolutionofCH3CNcontaining0.1M
tetrabutylammoniumhexafluorophosphateand1mMof4-nitrobenzenediazoniumata
scanrateof50mVs−1.
Figure6.2Massversustimeresponseofacarboncoatedquartzcrystalmicrobalance
fortheelectrochemicalgraftingof4-nitrobenzenediazonium(1mM)atafixedpotential
of−0.5VversusAg/AgNO3.DataarefittedusingtheLangmuirmodel(solidlines).
Scheme6.2Reactiontoattachsilylgroupsattheparapositionofaryldiazonium.
Scheme6.3Modificationprocesstogetmonolayersurfacecoverageoncarbonusing
differentprotectinggroups.TMS,TES,TIPS,andTBAFrepresenttrimethylsilyl,
triethylsilyl,tri(isopropyl)silyl,andtetrabutylammoniumfluoride,respectively.

Figure6.3ComparisonofbiasstabilityofmolecularjunctionswithCuande-Castop
contacts.Cujunctionbreaksdownatapproximately−1.86V,duetoelectrochemical
oxidationofCu,whilee-Cisstableuptoabiasof3.5V.
Scheme6.4Oxidativeelectrograftingofamineoncarbonsurface.
Figure6.4CVsobtainedatGCinasolutionofethanolcontaining0.1MLiClO4and1
mM(a)butylamine,(b)N-methylbutylamine,(c)N-ethylbutylamine,(d)N,Ndimethylbutylamine,and(e)triethylamine.Thescanratewas10mVs−1.
Figure6.5XPSspectraintheN(1s)regionforGCelectrodemodifiedbycyclingthe
potentialoncebetween0.0and1.4VversusAg/AgClinethanolicsolutionsof1mM
(a)butylamine,(b)N-methylbutylamine,(c)N-ethylbutylamine,and(d)N,Ndimethylbutylamine.Scanratewas10mVs−1
Figure6.6CVsmeasuredatGC(a,c)andpyrolyzedphotoresistfilms(b,d).(a,b)First
scan(—)andsecondscan(---)(0.2Vs−1)withstirringbetweenscansinasolution
of5.2mM1-naphthylmethylcarboxylateand0.1Mtetrabutylammonium
tetrafluoroborateinacetonitrile.(c,d)Scansof3.1mM
inaqueous0.2M
KClatbare(---)and1-naphthylmethylcarboxylatemodified(—)surfaces.
Scheme6.5Mechanismofgraftingbyusingaredoxmediator.
Scheme6.6Oxidativeelectrograftingofalcoholoncarbonsurface.
Scheme6.7VarioussurfaceconstructionstrategiesoniodinatedPPF.Firstly,PPF
surfaceisiodinatedbyexposingittoiodineplasma.Iodinatedsurfacecanthenbe
reactedwithdifferentalkeneandalkynecompoundsinthepresenceofappropriatelight
(A,B,andC).Furthersurfacemodificationcanthenbeachievedvia“click”reaction
(B)orattachmentofnanoparticle(C).
Scheme6.8Modificationofgraphenewith(a)monoaryldiazoniumsalt,(b)
biaryldiazoniumsalt,and(c)bipyrene-terminatedmolecularwire.
Scheme6.9Reversibleinteractionofchargedpyrenederivativesongraphitesurface.


Scheme6.10Watercontactangle(a)andwaterabsorption(b)imagesofuntreatedand
CTAB-treatedcarbonfelts.
Scheme6.11ElectrodepositionofMWCNTsusingCTABsurfactant.(a),(b)and(c)

showthepossiblearrangementsofCTABonMWCNTs.
Chapter7:CarbonMaterialsinLow–TemperaturePolymerElectrolyteMembraneFuel
Cells
Figure7.1Schematicillustrationtocategorizethemostprominentcarbonmaterials.
Figure7.2Thethreecharacteristicsofcarbonblackdeterminingitsrichproperties:
particlesize,aggregatestructure,andsurfacechemistry.
Figure7.3TemplatingstrategyforobtainingCMK-3carbonfromSBA-15silica[10].
Figure7.4Imagesofthemostprominentcarbonaceoussupportmaterials:(a)graphite
and(b)Vulcancarbon.(TakenfromRef.[14].Copyright(2014),withpermissionfrom
ElsevierLimited).
Figure7.5ComparisonofRamanspectraofdifferentcarbonmaterials[16].
Figure7.6CK-edgeNEXAFSspectraofdifferentcarbonmaterials(J.Melke,
unpublishedresults).
Figure7.7Schematicillustrationofthethree-phaseboundaryinfuelcellelectrodes.
Figure7.8False-colorimageofanultrathinsectionofafuelcellelectrode;theinset
showsatypicalcarbonagglomerate.
Figure7.9(a)Current–voltagecharacteristicsofthethreemorphologicallydifferent
supportmaterialswiththelongfibersdisplayingthehighestpoweroutput.(b)The
chordlengthdistributionsforthelongandshortfibersarecompared.
Figure7.10Comparisonof3D-reconstructedvolumesof(a)anairbrushedelectrode
and(b)anLbL-preparedelectrode(b).[131](
Figure7.11Electronmicrographsofacrosssectionofamultilayerelectrode
composedofbilayersofPtonSb-dopedtinoxideandmultiwalledcarbonnanotubesin
differentmagnifications[147].
Figure7.12ElectrospunandcarbonizedPANfibersdecoratedwithPt(a;brightspots
attributedtoPtparticles)andanoverviewofthefinalfreestandingporouselectrode
structure(b).
Figure7.13(a)SchematicillustrationofaPickeringemulsionand(b)SEMpictureof
therespectivePt/SnO2shellaroundapolyaniline(PANI)coresample.
Figure7.14(a)Crosssectionthroughacatalyticlayerformedby“self-assembly”of

thePickeringemulsionand(b)thecorrespondingfuelcellpolarizationcurve.
Chapter8:ElectrochemicalCapacitorsBasedonCarbonElectrodesinAqueous


Electrolytes
Figure8.1Schematicrepresentationofthechargedstateofasymmetricelectrical
double-layercapacitorusingporouselectrodesanditssimplifiedequivalentcircuit.
Figure8.2Ragoneplotofvariouselectrochemicalenergystoragesystems.
Figure8.3Gravimetriccapacitanceversus(a)BETand(b)DFTspecificsurfacearea.
Figure8.4MolarproportionsofTEA+andBF4−calculatedfromtheNMRspectra,and
relativeamountofANversusthetotalamountofelectrolytespecies,afterpolarization
atvariouscellpotentialsfor30mininthe(a)positiveand(b)negativeelectrodesof
AC/ACelectrochemicalcapacitor.
Figure8.5VolumetriccapacitanceofmicroporouscarbonsinTEABF4/ANelectrolyte
vsaveragewidth(Lo)ofporesaccessibletoCCl4[57].
Figure8.6Nitrogenadsorption/desorptionisothermsobtainedat77K(a)and
quenchedsoliddensityfunctionaltheory(QSDFT)poresizedistribution(b)ofAC,
AC-PTFE,andAC-PVDFelectrodes.Fortheelectrodes,theamountofnitrogen
adsorbedisreferredtothemassofAC[60].
Figure8.7RagoneplotsofAC/ACcapacitorsin1moll−1Li2SO4and6moll−1KOH
aqueoussolutionswithcelloperatingpotentialwindows0–1.6and0–1.0V,
respectively.Valuescalculatedforthetotalmassofactivematerials.
Figure8.8Three-electrodecyclicvoltammograms(2mVs−1)showingthepotential
stabilitywindowofACin6moll−1KOH,1moll−1H2SO4,and0.5moll−1Na2SO4
[17].
Figure8.9Three-electrodecyclicvoltammogramsofACin2moll−1Li2SO4.The
variousloopsareobtainedbystepwiseshiftingofthenegativepotentiallimit.The
verticaldashedlineat−0.35VversusNHEcorrespondstothethermodynamic
potentialforwaterreduction.
Figure8.10VariationofpHvalueaftercathodiccharging(−500mAg−1for12h)of

ACelectrodesin0.5moll−1Na2SO4solutionswheretheinitialpHwasadjustedby
additionof1moll−1H2SO4or1moll−1NaOH.
Figure8.11Schemeoftheacceleratedagingprotocol(a)andmagnificationofthefifth
galvanostaticcycle(b).Thefifthdischargecycleofeachseriesisconsideredto
estimatethecapacitanceandESRvalues.
Figure8.12Effectoffloatingcellpotentialat24°Conthe(a)relativecapacitanceand
(b)relativeresistanceofanAC/ACcapacitorin1moll−1Li2SO4[98].
Figure8.13Poresizedistribution(PSD)ofafreshelectrode(fulldarkgrayline)and
ofagedpositive(dashedlightgreyline)andnegative(dottedlightgreyline)electrodes


after120hoffloatingat1.7Vin1moll−1Li2SO4.TheQuenchedSolidDensity
FunctionalTheory(QSDFT)wasusedtodeterminethePSD[98].
Figure8.14TPDonpristineACC(fulldarkgreyline)andonagedpositive(dashed
lightgreyline)andnegative(dottedlightgreyline)carbonelectrodesafter120hof
floatingat1.7Vin1moll−1Li2SO4:(a)masslossandCO2evolution;(b)massloss
andCOevolution;(c)deconvolutionofCO2;and(d)COpatterns(fulllightgreyline:
TPDexperimentaldata;dashedlines:individualpeaks;thickdashedline:sumofthe
individualpeaks).
Figure8.15NyquistplotsofAC/ACcapacitorsat0Vbeforeandafterfloatingat1.6V
for120hin(a)1moll−1Li2SO4and(b)1moll−1Li2SO4+0.1moll−1Na2MoO4
[106].
Figure8.16VoltammetrycharacteristicsofanAC/ACcellin1moll−1KIsolution:(a)
AC/ACcellwithSCEreferenceat5mVs−1;(b)two-electrodesystemat1,10,and
100mVs−1potentialscanrate.
Figure8.17Cyclicvoltammograms(at1mVs−1)oftwo-electrodecellsoperatingwith
activatedcarbonsAAC1orAAC2iniodide/vanadiumconjugatedredoxcouplesas
electrolytesolutions[112].
Chapter10:CarbonElectrodesinMolecularElectronics
Figure10.1Generalizedschematicofagenericmolecularjunction,consistingofa

molecule(canbeoneormany)placedbetweentwoconductors(examplesforeach
contactareforillustrativepurposes).Asshown,awidevarietyofmaterialscanbe
used,andthechoiceofmoleculesandcontactscanimpactthespecificelectronic
interactionsattheinterface–chemisorption(C−C,Si−SiOx)orphysisorption(π–π,S
−Au,etc.),whichcanexertacontrollinginfluenceonjunctionbehavior.Upon
applicationofvoltageacrossthejunction,currentflowsacrossthemolecularlayer.
However,thesystemshouldbetreatedaswhole,asthethicknessandelectronic
propertiesofthemoleculearenottheonlyfactorsthatwilldictateconductivity.
Figure10.2Schemeshowingchemicallymodifiedelectrodesthatareusedtostudy
variouselectrochemicalprocesses,includingelectrontransferratesacrossmolecules.
Figure10.3Variousstructuresofmolecularjunctionscommonlyusedinmolecular
electronics:(a)Crossjunctionformedbyperpendicularlyorientedbottomandtop
contactswithamolecularlayersandwichedbetweentheconductors.Typicaljunction
sizesrangefromseveralsquaremicronstoasquaremillimeter.(b)Anall-carbon
molecularjunctionformedusingpyrolyzedphotoresistfilm(PPF)(onSiO2support)as
abottomcontact,anevaporatedcarbon(eC)topcontact,andamolecularlayer
consistingofamultilayerofbiphenylgraftedusingdiazoniumchemistry.(c)Molecular
junctionmadebycontactingathiols-basedself-assembledmolecularlayeronAgwith
aliquid–metal(inthiscase,aeutecticalloyofGaandIn).((c)ReproducedfromRef.


[36].)(d)Amechanicallycontrolledbreakjunctionformedusingretractable
electrodescontrolledwithanSTM,wheremoleculesinsolutionbridgethegapto
resultinajunction[37].(e)Otherexperimentalgeometriesforstudyingelectronic
propertiesofsinglecarbonnanotubesoragraphenenanoribboncanbemadethrough
formingcontactswithlithographicmethods.
Figure10.4FabricationandmeasurementsofmolecularjunctionformedonPPFusing
diazoniumchemistry.(a)CyclicvoltammogrammeasuredataPPFelectrodefeaturing
anirreversiblereductionpeakatapproximately−0.8Vthatcorrespondstothe
reductionofdiazoniumionswithsubsequentformationofaC−CwithPPF.Growthof

themolecularlayerresultsintheincreasedblockingofelectrontransferfromthe
electrodeandgradualdecreaseofthepeakintensity(seealsoChapter6oncarbon
electrodemodification).(b)AFMimageofthemolecularlayerobtainedin(a),
showingthatfilmishomogeneous,andthatthethicknesscanbemeasuredusingAFM.
(c)Overlayofthecurrentdensity–voltagecharacteristics(semilogarithmicscale)of
eightjunctionsshowinggoodreproducibility.(d)Ramanspectra(measuredwitha514
nmprobethroughanopticallytransparentquartz/PPFsubstratemadebydilutingthe
photoresist)ofaQ/PPF/NAB/CujunctionwithandwithoutaCutopcontactshowing
nochangesinthestructureofanitroazobenzenemolecularlayer.(c)(Reprintedwith
permissionfromRef.[72].Copyright(2010)AmericanChemicalSociety).(d)
Figure10.5Biasandtemperaturestabilityofall-carbonMJs:(a)ComparisonofCu
ande-Castopcontacts,showingthattheuseofCuleadstobreakdownat
approximately−1.86V(duetoelectrochemicalreactionsofCu),whilee-Cshows
stabilityto±3.5V(withcurrentdensitiesupto 1500Acm−2),junctionarea:
).(b)OverlayofJ–VcurvesforPPF/NAB(4.1)/Auand
PPF/NAB(4.1)/eC(10)/Aujunctionsshowingthat10nmofe-Cpreventspenetrationof
Au.(c)J–VcurvesofPPF/NAB(4.5)/e-Cjunctionafterheatinginvacuum
for30minateachtemperature.(d)J–VcurvesofaPPF/NAB(4.5)/e-C
junctionbeforeandafter
cyclesat100°Cinlabambient(air)overthecourse
of 68h.(AdaptedwithpermissionfromRef.[82].)(e)J–VcurvesofaPPF/BrP(3)/eC/Aujunctionbeforeandaftertheapplicationof±0.8VDCbiasfor1–4hatroom
temperature.Insetsdisplaythesamedataplottedinasemilogscale.
Figure10.6(a,b)Electronicbandstructureofgrapheneshowingvalenceand
conductionbandstouchingattheDiracpointsandhavingalineardispersionrelation
aroundtheFermilevel.Comparisonof(c)zero-bandgapgraphene,(e)bandgapopenedgraphene,and(d)asemiconductor,suggestingthepossibleuseofzero-band
gapgrapheneasaconductorforMJsandwithabandgapasamolecularlayer.
Figure10.7Reversibleswitchingofconductanceinajunctionconsistingofgraphene
functionalizedwithspiropyran.Spiropyran,aphotochromicswitchattachedtoG
noncovalently,isabletochangestatesbetweentheringclosed(smalldipolemoment)
andringopen(largerdipolemoment)uponirradiationwithUVandvisiblelight.(a)

Changesintheelectronicconfigurationofspiropyranaretranslatedintochangesofthe


positionofDiracpointofgraphene(b),resultinginchangesintheappliedgatevoltage
(c)andconductance(d).
Figure10.8GraphenefunctioningastopandbottomelectrodesforMJs.(a)Similarly
toeC,thepresenceofgraphenebetweenmolecularlayerandAutopcontactprotects
thejunctionfromshortcircuitsbetweenelectrodes.(ReproducedfromRef.[106].)(b)
Usingdiazoniumchemistry,anazobenzenelayerwasgrowncovalentlyonagraphene
bottomcontact,whileatopgrapheneelectrodewascontactedphysically.The
mechanicalandopticalpropertiesofgrapheneelectrodesallowedtestingofelectronic
propertiesundermechanicalstress,and(c)photochemicalswitchingofazobenzene
betweencis-andtrans-isomersinducedbymulticycleswitching(d)oftheconductance
ofthejunction,whichwasreversible(e).
Figure10.9Formationofacarbonnanotubebyrollingupagraphenesheet.Depending
onthechiralvectoralongwhichthenanotubeisrolled,zigzag,armchair,andother
chiraloptionsarepossibleresultinginmetallicorsemiconductingCNTs.
Figure10.10ConstructionofFETswithindividual(aandb)andcollective(c)
nanotubes.(a)AFMimageofanFETcomposedofgoldsourceanddrainelectrodes
andanindividualcarbonnanotubeasachannel.Aheavilydopedwaferservedasa
backgateelectrode.Alternatively,anindividualtopgateelectrodemadeofTicanbe
employed(b).(a,b)(ReprintedwithpermissionfromRef.[132],Copyright(2002)
AmericanChemicalSociety.)(c)FETcomposedofanarrayofCNTs,withan
individualgateTi/Auelectrode,separatedwithanAl2O3/SiO2insulatinglayerand
Ti/Pdsourceanddrainelectrodes.
Figure10.11(a)Agapinananotubeiscreatedusinganoxygenplasmatoyieldaspace
offewnanometers,whichissuitablefortheformationofamolecularjunction.The
endsofcarbonnanotubesterminatedwithcarboxylicgroupsandservingasapointof
contactforfurtherfunctionalization.(b)OligoanilineplacedbetweenCNTcontacts
allows(c)reversibleswitchingoftheconductanceinthejunctionbychangesinthepH

duetoprotonation/deprotonation.
Figure10.12Agenericenergyleveldiagramofamolecularjunctionshowingthe
FermilevelofthecontactsoffsetfrommolecularHOMOandLUMOlevelstodefine
interfacialbarriers(here,abarriertoholetransportmediatedbytheHOMOisshown,
(φ)).Filledstatesintheconductorsareshaded.Aparallelsituationcanbedrawnfor
electrontunneling(usingtheLUMO).
Figure10.13(a)Attenuationplotforanelectrochemicalexperimentshownin(c).
Here,thellnoftheelectrochemicalrateconstantisplottedagainstthicknesstoyielda
slopeof0.22Å−1(or2.2nm−1).(b)Attentionplotforaseriesofaromaticmolecules
andanaliphaticspeciesbymolecularjunctionsofdifferentthicknessofeach(a
correspondingdiagramofthemolecularjunctionisillustratedin(d)).Seeoriginaltext
forstructuresandabbreviations.Here,thearomaticmoleculesgivesimilarbehavior
duetotheinteractionsbetweenthemolecularlayersandthesubstrate,asdiscussedin


thetext.(a)(ReprintedwithpermissionfromRef.[166].Copyright(1999)American
ChemicalSociety.)(b),(d)
Chapter11:CarbonPasteElectrodes
Figure11.1Typicalmicrostructuresoftworelatedgraphitepowdersandfourdifferent
carbonpastemixturesmadeofthesecarbons.Abbreviationsandsymbolsused:Cspe,
spectroscopic(orspectral)graphite;Cnat,refinednaturalgraphite;SO,siliconeoil;
TCP,tricresylphosphate;andIL,ionicliquid(BMImPF6);theindividualcarbonpastes
denotedaccordinglyabovetherespectiveimages(af).Experimentalconditions:
scanningelectronmicroscopy,magnification:1:1000(ae);scale:theactualsizeof
photoscorrespondsreallyto(25àmì35àm),1:500(f;s=50àm).Hitherto
unpublishedphotosfromauthors'archives,except(e)beingthealternateviewofan
imagepublishedin[37].Forotherspecificationanddetails,see[35,37,58,60].
Figure11.2Typicalmicrostructuresoftwonewformsofcarbonandfourcarbonpaste
mixtures,madeoftraditionaloilbindersandionicliquid.Abbreviationsandsymbols
used:Cspe,spectroscopicgraphitepowder;GC,glassycarbonpowder(Sigradurđ);

CNTs,carbonnanotubes(SW-type);MO,mineraloil;SO,siliconeoil(highly
viscoustype);andIL,ionicliquid(BMImPF6);theindividualcarbonpastemixtures
denotedaccordinglyabovetherespectiveimages(af).Experimentalconditions:
scanningelectronmicroscopy,magnification:1:1000,scaleasinFigure11.1.Hitherto
unpublishedphotosfromauthors'archives,except(a)beingthealternateviewofan
imagepublishedin[37].Forotherspecificationanddetails,see[35,37,5860].
Figure11.3Typicalfeaturesandbehavioroftraditionalornewcarbonpastesandthe
respectiveelectrodesincurrentflowmeasurements.(ad)Cyclicvoltammetryof
[Fe(CN)6]3/4in0.1MKCl,c(Fe)=5mM,lighterline,GCE(a,b)orGC-IL(c,d),
hithertounpublishedrecords;(e)AdsorptivestrippingvoltammetryofNiIIatthelow
partsperbillionlevelin0.1Mammoniabuffercontaining10MDMG(dimethyl
glyoxime)+HgII.Legend:curve(1)blank,(2)c(NiII)=5ppb,and(3)c(NiII)=10
ppb.Note:symbolO2denotesthereductiveresponseofoxygenentrappedinthepaste;
anouttakefrom[84];(f)Cathodicreductionofiodineathigherconcentrations
accumulatedin0.1MHClviaion-pairingandextraction.Legend:curve(1)blank,(2)
c(I)=0.01mM,and(3)c(I)=0.1mM;anouttakefrom[85].Abbreviationsand
symbolsused:C,spectralornaturalgraphitepowder;MO,mineraloil;SO,silicone
oil;TCP,tricresylphosphate;MF-,mercuryfilm;CNTPE,carbonnanotubepaste
electrode(SW-CNTs/SOtype);andCILE,carbonionicliquidelectrode
(Cnat/BMImPF6type).
Figure11.4Threeexamplesoftypicalapplicationsofchemically(ac)and
biologically(d)modifiedcarbonpasteelectrodes.(a,b)CalibrationsofPtIVandIrIIIat
themicromolarconcentrationlevelataCPEmodifiedinsituwithquaternary
ammoniumsalt.Legend:(a)baseline,(25)1,3,6,and9MPtIV;(b)(1)baseline,


(2–5)3,6,9,and12μMIrIIIexperimentalconditions:DPCSV;0.1Macetatebuffer+
0.1MKCl+1×10−5Mcetyl-tributylammoniumbromide(CTAB,pH4.5);
accumulationpotentialandtime:+0.9Vversus30s;stripping:from+0.9to−0.3V;
scanrateandpulseheight:10mVs−1;ΔE=−25mV.

Chapter12:Screen-PrintedCarbonElectrodes
Figure12.1Thescreenprintingprocess.
Figure12.2Meshandmaskgeometry.
Figure12.3Thebasicelementsofamultilayeredelectrode.
Figure12.4AscanningelectronmicroscopeimageofacrosssectionofascreenprintedporouscarbonelectrodehavingalowIRdrop.
Figure12.5Theequivalentcircuitofaporouscarbonelectrode.Itconsistsofasingle
verticalladdernetworkinserieswithanRCparallelnetwork.Theladdernetwork
modelstheresponseofporesinthebodyoftheelectrode,whereasthesolitaryRC
parallelnetworkmodelstheresponseoftheelectrolytesolution.(Inmanycases,the
capacitanceoftheelectrolytesolutionisbetterrepresentedasaconstant-phase
element.)

ListofTables
Chapter1:PropertiesofCarbon:AnOverview
Table1.1PhysicalpropertiesofHOPGat300K[47].
Chapter2:ElectrochemistryatHighlyOrientedPyrolyticGraphite(HOPG):Towarda
NewPerspective
Table2.1SummaryofsomekeypropertiesofdifferentgradesofHOPG
Chapter3:ElectrochemistryinOneDimension:ApplicationsofCarbonNanotubes
Table3.1MaincovalentfunctionalizationstrategiesforthemodificationofCNTswith
generalapplicationsinelectrochemistry
Table3.2Voltammetricparametersobtainedfromthecyclicvoltammogramsfor1.0×
10−3MAA
Table3.3NoncovalentfunctionalizationofCNTs:comparisonofdifferenttypesof
dispersingagentsandtheirgeneralapplicationsinelectrochemistry
Chapter5:TheUseofConductingDiamondinElectrochemistry
Table5.1Physicalpropertiesofdiamond[11,12].
Table5.2ListofcommercialcompaniessellingBDDelectrodes.
Table5.3NonexhaustiveTableofΔEpvaluesrecordedforsimpleredoxspeciesby



differentauthorsusingdifferentlypreparedBDDelectrodes.
Table5.4NonexhaustivelistofdifferentmetalNPsdepositedonBDDelectrodesfor
theelectrocatalyticdetectionofarangeofdifferentanalytes.
Chapter7:CarbonMaterialsinLow–TemperaturePolymerElectrolyteMembraneFuel
Cells
Table7.1Overviewofcharacterizationmethodsappliedtounravelthegeometricand
electronicstructuresofdifferentcarbons
Table7.2OverviewofvariousRamanbandsandtheirinterpretation
Table7.3Listofrequirementswhichagoodsupportmaterialhastofulfilland
exemplarydataforVulcanXC-72
Table7.4Overviewofprominentcarbonblackmaterialsappliedinfuelcellresearch
Chapter9:CarbonElectrodesinElectrochemicalTechnology
Table9.1Typicalconditionsforthemanufactureofmetalsbymoltensaltelectrolysis
Table9.2CurrentefficiencyfortheformationofozoneasafunctionofHBF4
concentrationforcellswithglassycarbonanodesandairGDEcathodes
Table9.3Theelectro-generationofstrongoxidantsatboron-doped,diamond-coated
anodes
Chapter10:CarbonElectrodesinMolecularElectronics
Table10.1Thickness,voltage,andtemperaturedependenceforvariouscharge
transportmechanismsrelevantinmolecularelectronics
Chapter11:CarbonPasteElectrodes
Table11.1Surveyof(unmodified)carbonpastesandthecorrespondingcarbonpaste
electrodes
Table11.2Commonmodifiersforcarbonpasteelectrodeswithtypicalexamples.
Table11.3Modifyingagentsforcarbonpastebiosensorswithtypicalexamples.
Chapter12:Screen-PrintedCarbonElectrodes
Table12.1Halogen-free,high-boilingsolventsforPVDF



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×