Mathematical
Statistics
Asymptotic Minimax Theory
Solutions Manual
Alexander Korostelev
Olga Korosteleva
Solutions Y.la.nual to
MATHEMATICAL STATISTICS:
Asymptotic Minhnax Theory
Alexander Korostelcv
Olga Korostcleva
Wayrte Stale Um.t•et·stty,
Caltform.a Stale Um.verstty,
Dettvzt, MI 48202
Long Beach, CA 90S4tJ
www.pdfgrip.com
Chapter 1
EXERCISE 1.1 To verify firHt that the r<'pr<'SCntatiou holds, compute the
S<'cond partial derivative of lnp(.t,B) with reRpl. .ct to 8. It is
fP lnp(3'.. 8) _ _
1
(Dp(.v,8))2
882
(p(3·.8)] 1
DB
= _(a lup(x.0))2 +
an
+
1 l'"Pp(3'.• 8)
p(.v,8) tJ82
tJ2 p(a:.O).
1
p(x.8)
an2
Multiplying by p(x. 8) and r<'arranging th<' t<'rm...:; produ<'e the r<'...c;ttlt,
p(x.8))~ 1 O) _ fPp(:r, 8) _
( 8ln {)IJ
P\X!
{)IJ2
~ow
(CP ln882
p(a·, 8)) ( O)
p x. .
int<'grating hoth sides of this equality with r<'Hpect to .v, we obtain
-1
iJl p (.r., 8) d
-
1l
R
=
11
{jjji
= _
n
882
[)21
R
n
p(x, 0) d2· -n
1(
()2 ln p(3',8))
R
882
{ ([)2lnp(.v,8))
082
J:t
( fJ) .
p x, l13
p (.t·, 0) dx
0
1
R
:r
(iJllnp(x.8)) ( n)d· = _ E [lfl-htJ>(:r.8)]
882
p .r., 17 3
n o
iJ82
.
EXERCISE 1.2 The fust step is to notice that 8~ is an unbiased <'..Rthnator of
8. TndeE"d. Et~[ n;] = Et~[(l/n) L~=l (X; -J.t) 2] = Ee[(Xl p) 2] = 8.
Further, the log-likE>lihood function for the N(Jt. 8) distribution has the rorm
ThereforE>,
fJlup(.r,8) __ ..!_
ao
-
20
+
(:r- JL) 2
d D1 1np(a·,8) _ __!._
202 , an
802
- 202
_ (.v- p)~
03
Applyiug the result of Exerci~ 1.1. we get
I (n) = _
II 17
1}
E [8.!.1np(X.8)] = _ E [-1 _ (X -J.t).!.]
0
882
11 0 282
(}1
www.pdfgrip.com
.
= -
11
8]
1
[ 282
-
n
= 282 .
(13
Kext, using th~ fac1 tha~ E~- 1 (X; /l) 2/8 hns a chi-squared dis1 ribu~ ion
with n degrees of freedom, aud, hen(·e its variance equals to 2n, we arrive at
Varo
[8;] - Vm·o [-n1
"
]
~(X,- /l) 2
~
I= 1
-
'1. nli·
2fi·
n-
n
1
-., - - -
n;
--.
I fl (8)
Thu..CJ, we have shown that
is an tmhiascd estimator of 8 and that its variance attains the Ct·amer-Rno lower bound, Htn1 is,
is an ellid~n~ estimator
of 8.
e;
EXERCISE 1.3 For the Bl'•moulli(8) di..;;tl'ihution,
lnp (x, 8)- :c In 8 + (1- x) ln(1- 8),
thus,
U lnp(.t. 8)
D8
l'
1- X
=9-1-8
and
iJ-~
lnp(x, 8)
1- .v
( 1 - 8)2 .
l'
{}82
=-
(8
1-8) -8(1-8)'
n
82 -
From here,
[ X 1-X]
ln(O)=-uEe - 8J - ( 1 _ 8)2 =n 82+(1-8)2
On the other hand. Eo[.tn] - Eo[X]
8(1- 8)/n - 1/I,(8). Therefore
-
8 and Varo[Xn] -
e,; - Xn is <>flicient.
Vm·o[X]/n -
EXERCISE 1.1 In the Pois....;on( 0) model,
lnp(l". 8)
= .r ln8- 8 -ln:r!,
hcnc<'.
alnp(~r.O) = ~ _ 1
a8
8
nnd
8J 1n p(:r, 0)
882
:r
82.
Thus,
I , (8) - - n.Eo [ - X]
- !!:.
~
8'
The estimate .tn is unl>ias~d with the variauc~ Vm·e[.Xn] = 0/n = 1/ln(O),
and therefore efficieut.
www.pdfgrip.com
EXERCISE
1.!) For the given <.'>..'POn<'ntial dcu.~ity.
ln 1' (.r, 8) = - ln 8 - a'/8,
whcuce.
ahl p(:I.
(J)
. "
ao
1
:r
=-o+o~
02ln p(:r. 8)
ao~
aud
1
.
= 02
2:r
-
OJ .
Therefore,
1
In(IJ) - -nEll [ (J2
-
2X]
1Jo1
-
- 'Tl
[1
28]
(J'J
IJ2 -
-
n
IJ2.
Al80, EB [.Yn] = 0 and Vm·e [X n] = 02 In. = 1I1n(0). Ht'nce efficieucy holds.
1.6 If xl ..... X, arc iudcp<'nd<'nt <'>..lJOUentialrandom variabl<.'S
with the mean 1ltJ. their HUm Y - L~'= 1 X 1 has a gamma distribution with
the density
EXER('ISE
Consequently,
1] _
Ee [ •"-11
v
- -niJ
f(n.)
[!!..] _- n 1-,c ! u"-r(0" e-ue dy
1
Eg y
0
11)
U
1'')() y n-2 (Jn-1 e -yO dy0
,
niJf(n- 1)
f(n.)
nO(n-2)!
nO
(n- 1)! = n- 1 ·
Al..c;o,
Varo[1IX,]- Varo[n.IY]- .,~ (Ee[1IYJ]- (Eo[liY]) 2 )
- n2 [82f(n- 2) tJ.! ] - n2 82 [
1
1
]
f( n)
( n 1 )2 - •
( n - 1 )( n - 2)
( n - 1 )2
112 82
EXERCISE 1. 7
(n - 1)2 (n - 2) ·
Th<' trick hf•r<' is to notic<' th<' relation
Dlnp 0 (:r- 8)
08
-
1
8po(.r. -
Po(X - tJ)
4
www.pdfgrip.com
88
8)
8po(x- 0)
1
Po '(:t- 0)
= - P-o"""":(-:r---0~) .....;;_-:-8-x__;,. - - Po(x- 0) •
Thus we can write
0))2]
l (LJ) - nE [ (
" u
8
-
-
Po'(XPo( X- 8)
= ~1 f
' ./k
(Po'(y) )2 dy
Po(Y)
· '
which is a <:onstant independent of 8.
EXERCISE 1.8 esing the <':>.."}}rcs...;;ion for the fi...;;h<'r information dclived in th('
pr<'\iou.CJ <'X<'rdse, W<' write
In(IJ) - n.
= n C a2
1(
Po '(11) ) 2
~
11r!
2
·
Po(Y)
dy -
'fl
1"1
2 ( -Co·
-1r12
sin2 ycosn-':! ydy = n C a 2
-1r/~
1
y sin y ) 2 d
y
C cos" y
<'OSn-t
1"/'J. (1- cos y) CO.CJ
2
0 -
2
ydy
-1r/2
1r/2
= nC0 2
( C'OEin-'J.
y- COR0 y) dy.
-1r/~
Her"' the first t(•nn iCJ integrable if a- 2 > -1 (equival<'ntly, a> 1). whil"'
th<' second one i.. ;; int(•grahle if o > -1. Therefore, th"' Fi..<~h<'r information
cx.ists wh(•n a > 1.
www.pdfgrip.com
Chapter 2
EXERCISE 2.9 By Exercise 1.4, tht"' Fisher information of th<' Poisson(O)
sample is 1,(0) = nf8. The joint distribution of th<' sample is
,~
,~
(
PAJ,···
A 11
ll)
,u
=
c
llL X·
11
'e
u
718
where Cn = Cn(X1 •..•• X 11 ) is tht> normalizing c0lu3tant independent of 0.
As a function of 8. this joint probability has the algebraic form of a gamma
distribution. Thus, if we select the prior density to he a gamma density.
7r(B) = C(c.r. on-l ('- '~ 0 • () > 0, for SOlllt"' positive a and j-i, thC'n th<'
weighted posterior density is also R gamma density,
m
= l,((})C,()"L.s.e " 8C(u. fJ)fJ
C'n ol.. \;+o-l e-<n-[J)H. 0 > 0,
.f(BIXt .... ,X")
=
1e
0
118
n C,(X1, ... , Xn) C(oJJ) is th<' normalizing constant. Th<'
where C,
expected value of the weighted posterior gamma distribution is eqnal to
1
x
o
L
~
OJ(OIXJ .... ,Xn)dO-
X. + 0:
• 1 j
-
1
·
n+
EXERC'ISE 2.10 As shown in Exampl<' 1.10. the Fisher information 1,(8) nfu 2 • Thus, the W<'ight<'d posterior distribution of 0 can bt"' found RS follows:
{
C, 11
= · a2 t"'XP -
(
E x;
211 2
2(}
-
2a 2
= Ct exp { - -1 [ (J~) ( -n
2
u2
- C2 e>.-p { -
E X,
nfJ2
+ 2u2 + 2t7'J8
1) + -;;
~ (;~ + : 3) (0 -
U8
2 0 (nXn
-
(n u~ Xn
20Jl.
()'l
u.!
-
'l.a2
8
+
jt 2 ) }
2u 2
8
+ -Jt )] }
u~
+ pu 2 )f(n.u~ + u 2 )
r}.
Her<' C. C 1 , and C2 ar<' th<' appropriate normalizing constants. Thns. th<'
weighted posterior m<'Rn is ( n t7~ X, + Jta 2 ) f (n 11~ + u 2 ) Rnd tht"' variance is
(nfa 2 + 1/a3)- 1 = a 2 uU(na~ +112 ).
ExJ<;H.CISJ<; 2.11
First, we derivt=> the Fisher information for the exponent ia1
model. We have
In p(.r., 0)
= h1 ()
- 0 :r.
81n p(.c, (})
88
www.pdfgrip.com
1
=0-
.r. ,
and
B21np(:r, 0)
1
= - 02'
()02
ConSE>qu~nt Jy.
In(8) =
-nEo[- ;
2]
= ;:.
Further, the joint distribution of the sample is
P(x1 • · · · X n • 8> -_
rr
\..·,
8L X. e-OL,X,
·
with 1hE> norma1izing constant C, = Cn(X1, ••• , Xn) indepE>ndE>nt of fJ. As a
func1ion of 8, this joint pl'Obability belongs to 1h~ fami1y of gamma dis1ributions. hence. if we choose the ('Onjugate prior to be a gamma distribution,
1r(O) = C(a, 1J) oo- 1 e- 10 , 0 > 0, with some <.t > 0 and f3 > 0, theu th~
weighted posterior is al80 a gamma.
i- (81
x1 .....
Xn) - 1,(8)
c, 8L X, ~-O L, X, C(n, p) 8°-
1 r,- 80
_ f:,.,fJ'L.X,+a-3 e-(L,X;+J)O
where C11 - nC11 (X~o ... ,X,)C'(u,/J) is 1hE> norma1i~ing constant. Th~
('Orresponcling weighted posterior mean of the gamma distribution is equal
to
EXERCISE 2.12 (i) The joint density of n independ<>nt Bernoulli(B) observatious X 1 •••• , X, is
p
,,.
,,. a)
(""1
8 E x. ( 1 - 8) ,_Ex, .
' .•. """ ' f7 =
l7sing the conjugatE> priot· 1r(8) = C [ 8 (1 - 8)] v'ii/:l- 1 , we obtain the nonweighted post~riorclensity f(O Ixh ... . Xn) = coEX;+...;n/2- 1 (1-0)"-EX,+v'n/2-1
which i..'i a beta density with the mean
0. =
"
r:.xi + .fii/2
r:.xi + Vfi/2 + 11- r:.xi + vn/2
(ii} The vari&l('e of
_
r:.xi + vn/2
n
+ .fii
o,: is
-
uO(l- 0)
(n + .jii)2 •
and the bias E>qua1s to
b,(8, 8~)
n
= Eo[ 8~) n
8
= nH + Vri./'2 n+vn
8
7
www.pdfgrip.com
= /»/2 - /» 8
n+Vri.
CoURcquently, the non-normalized quadratic risk of
Ee[(o,;- 0) 2 ~ = Vare[O;]
e; is
+ b~(o,o;)
u0(1-0)+(vn/2-yln0) 2
n./4
1
(n + y'11) 2
(n + y'n) 2
4{1 + y'1i) 2 •
{iii) Le~ ln = t 11 (Xt- ... , X,) be 1he BnyE'S esHmatot· with t·espE'Ct to a nonnormnlijf.ed risk fund ion
RnUJ,Bn, w) = Ee[w(Hn- 8)].
Thl"' statement and th<' proof of Thcorl"'lll 2.7> remain exactly th<' same if the
non-normalizro risk and the corresponding Bay<'.s l"'Stimator arc used. Since
8,; is the Bayes estima~or fot· a constant non-norma1iY.ed t·isk, it is minimax.
EXERCISE 2.13 In Example 2.1, lt>t (.\: = () = 1
+ 1/b.
Theu the Bayes
estimator assumt>S the form
L
X, + 1/b
+ 2/b
where X;'s arc independent D<'ruottlli(B) random variabl<'S. The uormalizru
quadratic risk of t 11 (b) i'i equal to
t (b) "
n
Rn(O, tn(b), w) = Ee [ ( y'T,:{O){t11 (b)- 0) ) 2 ]
[vm· [t,(h)] +b~(8,tn(b))]
] + (nEe[XJ] + 1/b 8)2]
1,(8) [ rt.Vare[X1
= 1,(8)
=
+ 2/b)2
(n
u
= 0(1-0)
=
_
0
n + 2/b
[ n.0(1-0)
(n0+1/b
e)..!]
(n+2/b)..! +
n+2/b -
n
[ n8(1- 8)
(1- 28) 2
8(1- 8) (n + 2/b) 2 + b2 (n + 2/b)..!
n
8(1 - 8)
]
n8(1 - 8) = 1 as b _ oo.
n2
Thus. by Tht>Orem 2.8. tht> miuima."< lower bound is equal to 1. The uorwalizcd quadratic risk of ..Y11 - lilll~J-x t,(b) is d<'rivcd as
Rn(8, Xn, w) = E11 [ ( vr;J8} (X11 - 8)) 2]
-
- 111 (8) Varo [Xn]
-
n
8 (1 - 8 )
8(1- 8)
n
- 1.
That is. it attainR the minimax lowl"'r bound, and hence
www.pdfgrip.com
Xn
i.CJ minima."<.
Chapter 3
X "' Binomial( n. , 82 ). Then
EXERCISE 3.14 Let
Eo[IV-Vn- el]- Eo[IIJx?n :JIJ
~ ~E~~[IX/n- 82 1] ~~VEe[ (X/n- 82 ) 2 ]
(by the Cauchy-Schwarz inequality)
EXERCISE 3.15 First we show that the Hodges estimator
Bn is Mylllptotically
m1biaHed. To this <'nd w1:ite
Eo [Bn - X, + .tn - 8] - Ee [Bn - .Yn]
Eo [Bn - 8] =
Eo [ - X,I(IX,I
< n -1/1) ] <
11 -1/t ..,..
0 a..c; n- oc.
Kext cousider the ca.c;<.> 8 f 0. We will <'heck that
lim Eo[n (Bn -B)~] = 1.
II
•X
Firstly. we show that
Ee[ n (iJn -.til )
2]
-0 as n..,.. oo.
Indeed.
Eo n (8, - Xn [
A
-
_
- n
)
1/2 /
) ]
= nEo
nl/4
(-Xn)-I IX,I < n- 1/ 1) ]
[
-
1
__
. rn=e
nl/•1
l
(
-
(1£-8n 11'J) 2 /2
v211"
d
u.
Here we made a suhstitutiou ·u = z + On 112 • ~ow. since
exponent can be bmmdcd from above as follows
- (u- fJn. 112 ) 2 /2- - u2 /2 + u8n 112
-
lui <
82 n/2 ~ - u2 /2 + 8n 314
g
www.pdfgrip.com
n. 114 , the
-
82 n/2.
ilild. thus. for all sufficiently large n. th<> above integral admits the upper
bound
1
n11-t
< 1/2
- n
< e-il2 n/4
-
F\u·thcr.
w~
tu;e
<
u
:.?r
1
111!1
- - t' " 2 / 2 d-u
/
V2ir
-. 0 as n ~ oc.
Cauchy-Schwlll'z inequality to write
E~~[n(Bn- 8) 2 ]
= Ee [ n (Hn
..fiic
)
_,tt4
,1/4
th~
1
_ _ -~&.l/2+0nii4 -02 u/2d
Et~[n(O,- Xn +Xn- 8) 2 ]
=
~Y11 ){Xn
- Xn) 2 ] + 2Ee [ 11 (Bn
8)] + Et~ [n (Xn
' - Xn)
- 2 ] +2 { Ee [ n (On
.. - Xn)
- 2] } 1/2
1E(I [ n (On
=1
8) 2 ]
X
=1
Con..;;idcr now tho case 8 = 0. \Ve \\ill verify that
lim Ee [ n 8~ ]
n •XI
= 0.
EXERCISE 3.16 The follo\\iug lower bmmtl holdo.;:
sup Ee [ In(O) (On - 0) 2 ]
t~c<~
~
11
I.
wax Et~ [(On- Ol]
8C{do.Bd
(by (:t8))
10
www.pdfgrip.com
~
2It 1.. Eoo [ ( (8,.. -Do)2 +
.. - D1) 2 exp{Zo } ) I ( l::.Ln(tJo. 81) ;:::: zo )
(8,
~
2)(
> n1.cxp{Z'o}
Eo., [("'
(8n-8o) 2exp{-.:o }+(8,-81)
I D.Ln(Do.81)
2
>
-
11 1..
<.>xp{ Zu} EBo [ (
2
(0n - a0 )2 + (0n -
]
~ Zo )
01 )2 ) I ( t::.L n(a0..01) >
.,. ) ] .,
_ ;;o
since exp{- ~0 } > 1 for Zo is as..•mmoo ncgativ<'.
> n I.. exp{ ~o} (81 - Do )2 p Ou ( t::.Ln(llO
. (} ) > z )
l-O
-
2
2
nl,..Po exp{zo} ( _1_ ) 2 _ ! 1
{-}
>
1
;::
-1-.PtJexp ..o.
,
"'t
EXERCISE 3.17 First we show that the iuequality stated in the hint is valid.
For any 3' it i.e; n<'c<'s.rml'ily true that <'ithcr l·tl > 1/2 or lx-11 > 1/2, hc<'au.qc_. .
if the contrary holds, thcn-1/2 < x < 1/2 and -1/2 < 1-J: < 1/2 imply
that 1 = :c + (1- .t} < 1/2 + 1/2 = 1, which is false.
Furthea·, since w(.c) = w( -:c) we may assume that 3· > 0. And suppose that
.t ;:::: 1/2 (as opposed to the ca~ x - 1 > 1/2). In view of the facts that 1he
loss fuu('tion u• is evervwhert' uounegative and is increasing on the positive
half-a.-xis, we have
u:(.v)
+ w(x- 1)
;:::: w(.v) ;:::: ·w(l/2).
1\<.>>..'t, usiug the argmu<'nt idcutical to that in Ex<'rcisc 3.16. we obtain
~~f Eo [·u·( vn (B,- 8))]
;::::
4exp{zt~} Eoo [ ( w( v'» (B,- 8o)) +
+w(y'fi(On -Ot)) )I(D.Ln(Oo.Ot) > zo)].
Kow rc<'all that 81 = 80
continnl. .
+ 1/Vn- and
u...:;c the inl. .quality provro earlier to
Rx ..:ltC'IS ..: 3.18 I• sufikes to prove th~ assertion (3.H) foa· an indka1or fun(tion, that i8. for the bounded loss fun('tion w(·u) = r( lui > "'),where "' is
a fixed coustant. Wt' write
i b-n
(b a)
w( c- u) e-" 2/ 2 d·u
=
ib-n
I( lc- ul > "'!) e-"212 du
(b a)
11
www.pdfgrip.com
1 ~-;
-
e-u 2 / 2 du
+
1b-a
-tb-n)
t:-" 2 /J
du.
c+')
To minimize this t>xpressiou over values of c. take the derivative with respect
to c aud set it equal to zero to ohtain
or, oquival(•ntly, (c- -y)!
= (c + ")')2 •
The solution is c = 0.
Finally, the result holds for any lo.."'..'i fm1ction w since it can bc> written as a
limit of linear combination."! of indicator fuuctions,
,1_,
n
w(c- u) e-u.
2
/
2 du
-
-lb-n)
lim
L
tiwi
, ..... x i=l
whore
l,_,
1l( lc- ul > ")',) c-u.J/2 du
• -(b-nl
a
b
"f, = - - t, ti·w, = w(")',) - u:("'f;-d.
11
EXERCISE :t19 \V(•
will show that for both di..;;tributions tho representation
(3.15) takE'S placE>.
(i) For the exponential model, as shown in Exet·dse 2.11. 1he Fisher information l 11 (8) = n/8 2 • hence,
L,( 8o
+ tj JI,(Bo)) - Ln(8o)
= L,( 8o
+ ~) -
L,(8o)
- nln ( 80 + 8o~t ) - ( flu+ flo~t ) nX,
- nln(8o) +flo nXn
vn
= .vJa(HoT+
nln(1+
vn
:n) -~-
tBo...fiiX,-
~ +~.
Using the Tavlor expansion, we get that for large n,
2
-2t
'ft
1 ) = t Vii+ o,(-)
11
12 /2
+ o,(1).
Also, by the Central Limit 'l'he01·em, fot· a11 sufficiE>nt1y 1at·ge n, .Y11 is ap1/8o)8o ..;»=(flo X 11 - 1
proximately N(1/8o, 1/(nB~)), that is, (X,
is approximately N(O, 1). Consequent1y, Z = - (Bo Xn
t)vn is approximately standard normal as well. Thus, nln ( 1 + t/vn) - t00 vn.Y: 11 =
tvn- t 2 /2 + on(1)- tOo..fii.Xn = -t(OoXn- l)y'V- t 2 /2 + on(l) =
t Z - t 2 /2 + 0 11 ( 1) .
)..;»
12
www.pdfgrip.com
(ii) For the Poisson model. by Exercise 1.4. 1,(8)- njfl. thus,
L,( 9o + tjy'I,(fJu)) - Ln(Bo) - L,( 9o + t ~) - Ln(9o)
- nX, h1 ( 8o + t {8;) - n ( 9o + t {8;) -
Y»
t
= n X 11 ln (1+. nr::)- t
v u0 n
-.
= tZ-
-
(1 +
z
t
+ n.80
t
t~ +on(-)
1 )
n X 11 ( ~- 211
v u0 n
vo n.
n
.[ii;;'n =
- t A 11
n.Y, ln(fl0 )
V»
,.
.;e;;;; -
t2
~) -2
v~n
t
An
~
2 + On(1)
flo
+ On(1)
-t..ftio
= tZ-
tJ
? + On(1).
w
Here we used th<' fa<'t that by the CLT, for all large enough n . •Y, is approximately N(90 , fl0 /n). and hem;<'.
z _ .Y, - flo
.;o;;Tn
;e:;;,
.Y, ~ _
_
V8o
is approximately N(O, 1) raudom variable. Also,
Xn
=
~
(v'BoTi + Z) .;o;;JTi
11
~
= 1
+
Z
~-
v~n
(
1 +On 1).
EXERCISE 3.20 Consider a trun<'atro loss fun<'tion u:c( u) = min( u•( u), C)
foa· some C
> 0. As in thE> proof of TheorE>m 3.8, wE" write
sup Eo [we( v'ni(fJ) (8,
-
fl))]
8€=P
>
.jnl(O)
~b
jb/.;;I(O} Eo [we( .jn/(9) (Bn -
]
9)) dB
-b/.;;;;rol
= 21b
Jb E,1 ~ [we( ynl(O)On~ t)
t::::'i"i7i\
b
whet'(' we usf•d a chang<' of variables t
We <'Ontinue
= ;b
j_: Eo [
u:c( .;n;;iJn-
= y'n/(9).
]
dt
L<'t an= nl(t/y'n/(0)).
t) exp{dLn(O,t/v'nl(O))}] dt.
13
www.pdfgrip.com
Applying the LA~ condition (3.16). we get
1
= 2b
jb Eo [We·( VQ; 8,
-b
l.rl > lul-la· - Yl for any .r, and y E R implies that
An demcntary inequality
+
;b j_: En [we( va;; 8, - t) I<'}~."}) { z,(O)
-
~ow,
E":ll.l> {
z,(o) t - t2 /2}
+ e,(O, t)}
t - t 2 /'2
I] dt.
by ThE>Ol'em 3.11, and th~ fact tha1 we < C, the second 1el'ln vanishE>.s
grows, and thus is on(l) as n - oo. Hence, we obtain the following
as 11
lower bouud
sup
8Cl0
~
;b
Eg[ we( .jn.J(O) (On- 0))]
jb Eo [me( Fn 8, - t) <'}~."}) { Z,,(O) t- t2/'2}] dt
-b
+on(l).
Put,.,,=
va;;fJ,- z,(O).
> ;b
Eo [ ~xp { ~z~(O)} u:c( rJ,- (I -zn(O)))
L:
Wf•
CEI.ll
rewrite the hound
AS
exp {
~(1- z,(0)) 2 }] dt
+on(l)
which, aft<'r th(' substitution u = t - ~,(0)
h
+o,(l).
A..,. in th<' proof of Th(•or<'lll 3.8, for n- oo.
anrl, by an at·gumen1 similar to
th~
pt·oof of Theot·~m 3.9,
14
www.pdfgrip.com
Vb and l<>tting b, C
Putting a - b conclusion that
ood n go to infinity, we arrive at the
,
[
sup Et~ we( .jnl(8)(8n - 8))
dCP
EXERCISE
] lx
~
-x
2
w('u)
rn= f:- "12 du.
V 2tr
3.21 Note that the distorted parabola cau he vnitten in the form
The parabola- (l/2)(t- z) 2 + z2 /2 is maximized at t = ~. The value of the
dist01ted parabola at t = z is bounded from below by
On the other hand, for all t sud1 that It-~ I >
less thau z2 /2- 6. lndtted,
2v'6, this functiou is strictly
- (1/2)(t- z) 2 + z2 /2 + ~(/) < - (1/2)(2v'6)2 + z2 /2 + ~(t)
<
26 + ~ 2 /2 + o = z 2 /2 -
o.
Thus. the value t - t* at which the function is maximized must satisfY
It* - ::.1 :::; 2V"S.
15
www.pdfgrip.com
Chapter 4
EXERCISE 4.22 (i) The likl-.lihood function has the form
n
II p(X;,O) =
n
o-n II r(O < xi
i-1
= e-nr(o
< X1
Hc>r<' X 111 )
=
< 0)
i-1
o::; X2 <
~B.
8, ... , o ~
x,::;
8) = e-"I(X
max( X 17 •••• X n). AR depicted in the figml... below, function
e-n decreases ev~rywhere, at1o.ining its maxinnnu at th~ ]eft-mos• poin1.
Therefore, 1he MT.E of IJ is
8" = X 1n)·
0
(ii) The c.d.f. of X(n) can bt' found as follows:
Fx,.,Jr.)
= Po(X<n> < .t) = Po( X1 :5
:r, X2 ~ :r •... , X, ~ :r)
:5 :t") P9(X2 < .c) ... Pe {Xn < x) (by iudept'ndt'n<'e)
= Pe(Xl
= [?(
x1 ~
:r )
r i r· ,o
= (
< .r. :5 8 .
Hen<'e the density of Xtn) is
:rn )' = n.:r"-1
/Y,,,(.x) = }~,.,,(x) = ( 0"
0"
The expe<"ted value of
Eo"X )] ·
tn
1
(1
X(n)
n:r"- 1
:r ·
0
is (Omputed as
8 11
It
da:-8 11
1
9
.vnd;c-
0
nen-l
(n + 1)8n
aud therefor<>.
Ee[fJn·]
]=n+l..!!:.!!.._=8.
6 -n- 1">
= E[n+lx
n n +1
16
www.pdfgrip.com
n8
11
+1·
(iii) The variance of X(nl i..'l
'Vare[X
n
- 9n
1
11
0
:c
n+l
10
=
(
d.c -
~~
~
nO
nxn-1
x-
on
n8 )
n+ 1
..!
d2·- (
+ l)
11
n8"+2
- (n + 2) 8" -
11 292
(
2
n8 )
n+ 1
..!
nfJ2
=--(n+1)2- (n+1)2(n+2)'
n+2
Consequently. the varhUlCC of 8,; i..'l
+]
Var11 [0,
=
Va1·9
[u+l
Bx ..:H.C'IS ..: ·1.23 ( i)
]
Th~
n2
n0 2
(n+l)2(n+2)- n (n + 2) ·
likE-lihood func1 ion can bE> wri1 tE>n as
n
II p(X, 8) =
(u+lr~
=
-n.-X(n)
n
11
i=l
i=l
(L Xi- nB)} II n(X; :2: B)
exp {
i =I
11
= exp { -
L
X,
+ nB} I(Xl ~ (}, x2 :2:
8 .... ' Xn > 8)
1-1
n
= exp {nO}
r(X{l) :2: 0) exp { -
L xi}
i-1
with x(l) = min(Xb ... 'Xn ). Th<' S('Cond <'XpOn(•nt is constant with 1'('spect to 8 and may h<' disr<'p,Ardcd for maximizAtion pmpo.c;(•s. The function
exp{n8} is increAsing and therefore reAches its mAximum At the right-most
iJn = x(l> .
point
(ii)
Th~
c.d.f. of 1he minimum can
1 - Fx0 .(.r)
= P"(X
:2: .r)
h~
found by
= Pt~(Xl
th~
following argumen1:
~ :~·. X2
:2:
:r., ••. ,
Xn >
.c)
- P'11(X1 ~ :r) 1P'o(X2 ~ :r) ... P'11 (Xn ~ :r.) (by independence)
=
[Pe(Xl :2:
:r)
r = Lloo e dyr = [e 8)r =
(y
wh~nce
f'x(l)(l·)
=
(:r
ill
1-
c
n(:r
t.-n{x-111.
Therefore, the deuHity of Xc l) i.., derived aH
f.\(l>(x)
= F~u,(x) =
[t- c-u(:r-m]' = nr-u<:r-O),
17
www.pdfgrip.com
.r. :2:8.
tl)
The
~xpreted
value of Xcn is equal to
EtJ [ x(l) ]
=
1
100 :r. n e
=
n (:l 8)
d:~·
00 (!!.. + 0) e 11 dy (after substitution 11 = n(:r - 0))
o
n
11oc
ye- 11 dy +8
= -
n
lx
th~
+ 8.
~
-1
As il l'(.'to!Ult,
1
e- 11 dy = n
•0
0
=1
estimator 8,; -
X(l) -
1/n ic; an unbiased <.'Stimator of 8.
(iii) Th<' variance of X(l) is computed as
1
y
(-
0C'
=
u
0
1x y e
n-
1
= -;;
2
o
11
dy
+ 0) 2E-v dy
+ -20
n
-
( -1 + 0)2
u
100 u e "dy + 1-,c e
~
o
-2
o
Y
~
-1
-1
1
28
'l
1
- - - - - 0 - = -2
112
n
n •
Rx~o:n.CISJo: '1.2,1 Wf!' will show tha~ 1he S
VJ>(.' 8) is equal to D.8 + o(D.fJ) as D.fJ - 0. Then by Theot·em ·1.3 and
Examp1f!' '1.'1 H will fo11ow that thf!' Fishet· infonnation does not exis~. Ry
defiuition. we obtain
II JP( · . e + a8) - Jp( • • 8) II~ -
1
8 t at1
=
e
8 >d.c
+ ( et.l.812
-,c
1)- 1
1)
,
-
0+~0
0
= 1-
e-t.l.O
+ ( ct::..0/2
-
2 e-t.l.o
18
www.pdfgrip.com
c
(.1'
8) d:~·
- 2 - 2 r,-Q.0/ 2
1:18
-
+ o(/:18)
as 1:18-+ 0.
EXERCISE 4.25 First of all, we find tho valu<'.s of c_ and c_ a..c; functions of
8. By our assumption, r.. - c = 8. Also, since th~ density intf'grntE'S to
ouf', c 1 + c = 1. H~ur.e, c. = (t - 8)/2 and c. 1 = (t + 8)/2.
Next, we u::;e the formula proved in Theorem ·1.3 to compute the .Fisher
information. We have
J(o)
=
til ay'p( .. o);ao II~ =
_ 4, [ju (ay'(l0)/2)
88
2
-1
1
[
= '1 8(1 8)
+
da
•
+
1.
ay'(l + 0)/2) .2
88
0
1
8(1
1 (
+ 8)
]
1
= 1 - 82
d.r;
]
•
EXERCISE '1.26 In tht> case of the shifted exponential distribution w~ hav~
Z
_ rr"
, ((J ,8 + 11 I n) - ,_
exp {-Xi+ (0
1
+ ·u/n) }1l(X, ~ 0 + ufu)
+ 0 } I ( X; ~ 0 )
{ -.Xi,
e>.."P
E7_.
- t>Xp { X; + 71 (0 + u/n)} r( Xcn ~ 0
exp { - Ei= 1 X;+ nfJ}I(X(l) > 8)
- c-
+ ·u/n)
ur(Xctl~O+u/n)
"l(u~Tn)
- e I( X(l) > 8 ) where Tn - n (Xcn - 8).
n( XclJ ~ 8 )
Ht>r~ :Pp( Xn)
> 0)
= 1, and
:P'e( '1~, > t) = Pe( n (X(l) - 8) > t)
= Pe( Xcn > fJ + l/n) = exp {
-
n (8 + t/n - 8)} = exp {
t}.
Therefore, the likelihood ratio has a representation that satisfies prop~rty (ii)
in the definition of an asymptotically exponential stati~.Jtical experiment with
A(8) - 1. Note that in thi-; ca.'J<.', Tn has an exact exponential distribution
for any n. and on(l) - 0.
EXERCISE 4.27 (i) From Ex<'r<'isc 4.2:l, tho ('Rtimator (J~ is unhia.c;cd and its
varianc~ is equnJ to 82 /[n(n + 2)]. Thf'rerore,
,lli_·~~ Eo0 [ (n(B;- 8u)) 2 ] =
w
lim n2 Vm·oo [ 8,;]
n-oc
19
www.pdfgrip.com
=
lim
11-00
t
2(12
0 )
n n
+ 2 = 8~.
(ii) Fi·om Excrci.'K! 4.23.
Ilene<'.
8: is unbiased and its val'iancc is <'<}nal to 1/n
2•
EXERCISE 4.28 Consider the ca..o:;e y
1nc: lu
Ao min
y
ulr. >.oudu
0
- min (
y::;o
In the case y
>
_!_ ;\o
y) -
< 0. Then
= .Xo min
y
..!:.. ,
Au
leo
0
y) e
(u
·\o u dv
y- 0.
attained at
0,
.
- mm
(2c->.o11-1
v~o
Ao
ln2
+ Y ) - Ao '
attained at y = ln 2/;\o.
Thus,
Ao min
ycli.
Exl<;ltCJSI<;
=
1o~ lu- YIE-,\ou du
(w2 1)
=min ~. \
1\0
1\0
w2
- -
Ao ·
'1.29 (i) For n normn)izing constant C, we wl'ite by definition
c E>Xp {
n
-
L (X;- 8)} n(x.
1
> 8) ... K(Xn > 8) f, 1l(O < 8 ~ I>)
i=l
where
C1 - (
1y
o
t,no d8)
-l -
{
<'Xpn
~}
-
l, Y- rnin(X(ll•b).
:lO
www.pdfgrip.com
(ii) The posterior mean follows by dire<:t integration.
8 * (b)
= {y
"
It OE;
exp{
./0
n
718
d8 -
Y} - 1
.!
1
{ n y I et dl
E>xp{ r1 Y } - 1 .In
11
1 11 Y f'xp{ 11 }' } - ( exp{ n Y } - 1)
- ;;
exp{ n Y } - 1
y _
.!_ +
Y
.
exp( n. Y ) - 1
n
0
(iii) Consider th<' last tP.rm in thP- P.XprCRsion for th<' <'Stimator o;(b ). Since
by our assumption (} ~ Vb, we hav<' that ..Jb ::; Y ::; b. Th<'r<'for<', for all
large enough b, the detel"minist ic upper bound holds wH h 1P'8 - probahilH y 1:
y
---.,.---- <
b
---t 0 as b --+ oo .
exp{ 11 Y} - 1 - exp{ 11 Vb} - 1
Hence •hE> last term is negligible. To prove the proposition. it rf'mains to
show that
lim Ee[, (Y- .!_0)
n
2
2
b ·oo
1.
] =
rsing th<' definition of Y and th<' explicit formula forth<' distribution of X
we g<'t
Eo[11 1 ( Y- ; - B ) 2 ]
= 1Eo[n2 ( X(t)- ~=
n2 {b
.~
(y-
1
B) 2 1I(X(t) $b)+
0
~- 8 rll(X
b-
8) 2nc-n(y-O)dy + n (b- 2._B)
Tl
2._-
2
11
n(l• 8)
=
n2 (
=
(t- 1) 2 e-t dt
+ ( n(b- 0)
2
Po(Xol
2
- 1)
e-n(b-fl) --+
1 as b ---too.
Here the first tenn t f'nds to 1, whilE> the SE>eond one vanishE-s as b
w1iformly in 0 E : ..fb, b- Vb].
(iv) WE> write
r
~~fEe ( 11 (8, - 8) <')] ~
A
[
1" b
0
1 lEt~ [ ( n (811
A
lh-Vh lEo [(
1 fb
~ b
lo lEo [ ( n(8,;(b) - B) ) 2 ] d(J ~ b1 . v'b
>
b-:
..jb
inf
~b)
-
11
8))
--+
oo,
2] dB
(B;(b)
lEe [ ( 11 (8,;(b) - 8) ) 2 ]
.
v'b
The infimum if' whatewr dose to 1 if b if' sufficiently large. Thuf': th<' limit
as b ....,. OC• of the right-hand sid<' equal..;; 1.
)
y'jj 5:85, b
21
www.pdfgrip.com
Chapter 5
EXERCISE
5.30 The Bayes CRtilnator 8,; is th<' posterior m<'an,
L:;;t 8 exp{ Ln(B)}
(1ln) Ee-l exp{ L,(B)}
= (1ln)
(J*
n
=
E;; 1 fJ <'>q>{ Ln(fJ)}
LB-t <'XP{ Ln(8}}
Applying Theorem 5.1 and rome transfonnationR, we get
- E;=l (J <'>..']>{ L,.(fJ) - L,.(8o)}
" E;=t <'xp{ L,.(8) - L,.(fJo)}
e~
_ L; 1<7+0o
L 1 l~i+Oo~n (:'xp{ Ln(j + Oo) - Ln(Oo)}
_ L 1 l
L 1 1 ~ 1+ tlo ~ n exp{ c ~V (J) - c.! li II 2}
L 1 1< 1 -oo
= Oo + E 1 1 ~ 1 llo ~ <'XP{C ~V(")
J - <'2 1J·1 I 2} ·
11
5.31 WP. u~ the dP.finition or lV(J) 10 U01iCP. 1hnt lV(J) has a
N(o. IJ I) distribu1ion. Th~rerore,
RXJ.;RCISJo:
Ee0 [
~xp { c l-V (J)
- c2 U II 2 } ] = exp{- c U II 2 } Eso
= <'XP { - <'2 l.i II 2
+ tf IJ II 2 }
The cxpt-cted value of the numerator in (5.3)
Etlo [
L j <'XI> { (' 1-V(j) -
<'2
i.~
l.i II 2}]
i.~
=
L cxp{ clV(j)-?. 1i 112}] = L 1 =
00.
OC•.
i~:J:.
Kot(:' that
- KJ. -1~
-·-x>
=
LJ
infinit<',
jtF'F
EXERCISE 5.32
=
j~7.
the exp<'ctation of the denominator
Etln[
= 1.
equal to
i~~
Lik<'wi~c,
[ exp { c W (.i) } ]
[In Po(:t ± p.)] Po(x) dx
Po(x)
1oo [In (1 + Po(Y ±Po(.t}
JL) -
Po(Y))] J>o(x) dx
-
www.pdfgrip.com
<
1
00
[
Po(.r
± Jt)
- Po(.r)] Po(x) dx
Po(x)
-x-
j_:
[Po(3' ± Jt}
=1-
Po(3')] dx
1
= 0.
Ht'rt' Wt' have applied the inequality ln( 1 + g) < y , if g ::/= 0 , and the fact
that probability densities Po(x ± /1) aud Po(x) iutt'gratt' to 1.
EXERCISE 5.33 Assume for simplicity that On > 00 • By the definition of the
MLE, l:l.Ln(Oo, On) = Ln(On) - Ln(Oo) > 0. Also, bv Theort'm 5.H,
l:l.Ln(Bo. B,) = ~V(B"
Bo) -
/(+
(B" Bo)
L
=
i
Thererore, thP.
<
foUowin~
c, -
/(+
(0"- Bo).
Oo
inP.quali1 ies •akP. placP.
X
t'C.
I
l=m
l=m
i=l
L P'o.. ( l:l.Ln(Bu.Bu + l) 2:: 0) - L Poo( L e; ~ K+ l)
Ll
"C)
<
Ct
<
c2
m
(J t .SI •
l=m
A similar argument treats the caNe
con..c;taut c3 such that
8" <
80 • Thus. there cxi.~ts a positive
CouSf>QUP.n• ly.
00
:lO
L
m!!1PBo( IBn -Bol = m) < c.l
L m 2m-
m-0
m-0
Rx ..:ltC'IS ..: 5.3·1 Wf> f'$• imate •he 1l'tle change poin• valuf> by • he maximum
likelihood me• hod. Tht' log-likt'lihood function has the fonu
~
0
L(O) =
L
[x;ln(OA)+(l-X;)ln(0.6)] +
i=l
L
i=Btl
23
www.pdfgrip.com
[x;ln(O.i)+(l-X;)ln(0.3)].
Plnggin~
in th~ concn•t<• obf'<•rvationf': we ohtain the vahl<'s of tlw log-likelihood
function for
0
1
2
L(O)
-21.87
-21.18
3 -21.74
4 -21.04
5 -21.60
6 -20.91
7 -20.22
8 -20.78
9 -21.36
10 -20.6tl
0
11
12
13
14
2fi
16
17
18
19
20
L(O)
0
-19.95 21
-20.51 22
-21.07 33
-20.37 24
-20.93 2:i
-20.24 26
-19.5.) 27
-10.11 28
-20.67 29
-19.97 30
L(O)
-20.53
-21.09
-21.65
-20.96
-21.52
-20.83
-21.39
-21.95
-22.51
-21.81
Tbe log-likelihood function reaehes its maximwn -19.55 when 0
=
17.
EXERCISE 5.35 Consider a s~t X ~ R with the property that th~ probability
of a random variabl~ wit.h the c.d.f. F 1 falling into that set is not <'<}nal to
th~ prohahility of this <•vent for a random variabl<• with th~ r.d.f. F2 • Kot<'
that such a set necessarily <'xic;ts. becaus<' otherwise. F 1 and F 2 would h<'
id<'ntkally <'qual. Ideally we "ould like the set X to be as large as po...:;.c;ible.
That is. we "ant X to be the largest set snch that
.l
dF1(x)
f.~ dF·i:d.
Heplaciug the original observations Xi bv the indicators li = r(Xi EX):
i = 1, ... , n: we get a model of lleruoulli observations with the probability of
a f'Ucc~ss Pt dFt (x) hefore the jnmp: and P2 dF.!(:r). afterw~u·df'.
The met hod of maximum likelihood may b<> appli<>d to find the :MLE of the
ehmlg<' point (s<·~ Exerds~ 5.34).
Jt
J't
24
www.pdfgrip.com