Tải bản đầy đủ (.pdf) (110 trang)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.37 MB, 110 trang )


TableOfContents
PartI:Physics
LawOfTheLever
SlidingandOverturning
MaximumCarSpeed
RangeContinued
EscapeVelocity
CoolingandWind-Chill
AdiabaticProcesses
DrainingaTank
Open-ChannelFlow
Wind-DrivenWaves
Sailing
HeatRadiation
MainSequenceStars
ElectricalResistance
StringsandSound
PartII:Mathematics
Cylinders
ArbitraryTriangles
Summation
StandardDeviationandError
ZipfDistribution
PartIII:Appendix
UnitConversion
UnitPrefixes
References
CopyrightandDisclaimer
RequesttotheReader


www.pdfgrip.com


MoreGreatFormulasExplainedPhysics,Mathematics

www.pdfgrip.com


PartI:Physics
LawOfTheLever
Oftentimeswhendoingphysicswesimplysay"aforceisactingonabody"
withoutspecifyingwhichpointofthebodyitisactingon.Thisisbasically
point-massphysics.Weignorethefactthattheobjecthasacomplexthreedimensionalshapeandassumeittobeasinglepointhavingacertainmass.
Sometimesthisissufficient,othertimesweneedtogobeyondthat.Andthisis
wheretheconceptoftorquecomesin.
Let'sdefinewhatismeantbytorque.AssumeaforceF(inN)isactingonabody
atadistancer(inm)fromtheaxisofrotation.Thisdistanceiscalledthelever
arm.Takealookattheimagebelowforanexampleofsuchasetup.

Relevantfortherotationofthebodyisonlytheforcecomponentperpendicular
totheleverarm,whichwewilldenotebyF'.IfgiventheangleΦbetweenthe
forceandtheleverarm(asshownintheimage),wecaneasilycomputethe
relevantforcecomponentby:
F'=F·sin(Φ)
Forexample,ifthetotalforceisF=50NanditactsatanangleofΦ=45°to
theleverarm,onlythethecomponentF'=50N·sin(45°)≈35Nwillworkto

www.pdfgrip.com



rotatethebody.Soyoucanseethatsometimesitmakessensetobreakaforce
downintoitscomponents.Butthisshouldn'tbecauseforanyworries,withthe
aboveformulaitcanbedonequicklyandpainlessly.
Withthisoutoftheway,wecandefinewhattorqueisinonesimplesentence:
TorqueT(inNm)istheproductoftheleverarmrandtheforceF'acting
perpendiculartoit.Informofanequationthedefinitionlookslikethis:
T=r·F'
Inquantitativetermswecaninterprettorqueasameasureofrotationalpush.If
there'saforceactingatalargedistancefromtheaxisofrotation,therotational
pushwillbestrong.However,ifoneandthesameforceisactingverycloseto
saidaxis,wewillseehardlyanyrotation.Sowhenitcomestorotation,forceis
justonepartofthepicture.Wealsoneedtotakeintoconsiderationwherethe
forceisapplied.
Let'scomputeafewvaluesbeforegoingtotheextremelyusefullawofthelever.
--------------------------We'llhavealookatthewrenchfromtheimage.Supposethewrenchisr=0.2m
long.What'stheresultingtorquewhenapplyingaforceofF=80Natanangle
ofΦ=70°relativetotheleverarm?
Toanswerthequestion,wefirstneedtofindthecomponentoftheforce
perpendiculartotheleverarm.
F'=80N·sin(70°)≈75.18N
Nowontothetorque:
T=0.2m·75.18N≈15.04Nm
--------------------------Ifthisamountoftorqueisnotsufficienttoturnthenut,howcouldweincrease

www.pdfgrip.com


that?Well,wecouldincreasetheforceFandatthesametimemakesurethatit
isappliedata90°angletothewrench.Let'sassumethatasameasureoflast
resort,youapplytheforcebystandingonthewrench.Thentheforce

perpendiculartotheleverarmisjustyourgravitationalpull:
F'=F=m·g
Assumingamassofm=75kg,weget:
F'=75kg·9.81m/s²=735.75N
Withthisnotveryelegant,butcertainlyeffectivetechnique,weareableto
increasethetorqueto:
T=0.2m·735.75N=147.15Nm
Thatshoulddothetrick.Ifitdoesn't,there'sstilloneoptionleftandthatisusing
alongerwrench.Withalongerwrenchyoucanapplytheforceatagreater
distancetotheaxisofrotation.Andwithrincreased,thetorqueTisincreased
bythesamefactor.
--------------------------Asyoucansee,calculatingtorqueisnotabigdeal.Butwhat'stheuse?Thelaw
ofthelever,that'swhat.Imagineabeamsittingonafulcrum.Weapplyone
forceF'(1)=20Nontheleftsideatadistanceofr(1)=0.1mfromthefulcrum
andanotherforceF'(2)=5Nontherightsideatadistanceofr(2)=0.2m.In
whichdirection,clockwiseoranti-clockwise,willthebeammove?

www.pdfgrip.com


Tofindthatoutwecantakealookatthecorrespondingtorques.Thetorqueon
theleftsideis:
T(1)=0.1m·20N=2Nm
Fortherightsideweget:
T(2)=0.2·5N=1Nm
Sotherotationalpushcausedbyforce1(leftside)exceedsthatofforce2(right
side).Hence,thebeamwillturnanti-clockwise.Ifwedon'twantthattohappen
andinsteadwanttoachieveequilibrium,weneedtoincreaseforce2toF'(2)=
10N.Inthiscasethetorqueswouldbeequalandtheoppositerotationalpushes
wouldcanceleachother.Soingeneral,thisequationneedstobesatisfiedto

achieveastateofequilibrium:
r(1)·F'(1)=r(2)·F'(2)
Thisisthelawoftheleverinitssimplestform.Let'sseehowandwherewecan
applyit.
--------------------------Agreatexamplefortheusefulnessofthelawoftheleverisprovidedbycranes.
Ononeside,let'ssetr(1)=30m,itliftsobjects.Sincewedon'twantittofall
over,westabilizethecraneusinga20,000kgconcreteblockatadistanceofr(2)
=2mfromtheaxis.Whatisthemaximummasswecanliftwiththiscrane?

www.pdfgrip.com


Firstweneedtocomputethegravitationalforceoftheconcreteblock.
F'(2)=20,000kg·9.81m/s²=196,200N
Nowwecanusethelawofthelevertofindoutwhatmaximumforcewecan
applyontheoppositesite:
r(1)·F'(1)=r(2)·F'(2)
30m·F'(1)=2m·196,200N
30m·F'(1)=392,400Nm
Divideby30m:
F'(1)=13,080N
Aslongaswedon'texceedthis,thetorquecausedbytheconcreteblockwill
exceedthatoftheliftedobjectandthecranewillnotfallover.Themaximum
masswecanliftisnoweasytofind.Weusetheformulaforthegravitational
forceonemoretime:
13,080N=m·9.81m/s²
Divideby9.81:
m≈1330kg
Toliftevenheavierobjects,weneedtouseeitheraheavierconcreteblockorput
itatalargerdistancefromtheaxis.

--------------------------Thelawofthelevershowswhywecaninterpretaleverasatooltoamplify
forces.SupposeyouwantuseaforceofF'(1)=100Ntoliftaheavyobjectwith
thegravitationalpullF'(2)=2000N.Notpossibleyousay?Withaleveryou

www.pdfgrip.com


candothisbyapplyingthesmallerforceatalargerdistancetotheaxisandthe
largerforceatashorterdistance.
Supposetheheavyobjectsitsatadistancer(2)=0.1mtotheaxis.Atwhatwhat
distancer(1)shouldweapplythe100Ntobeabletoliftit?Wecanusethelaw
ofthelevertofindtheminimumdistancerequired.
r(1)·100N=0.1m·2000N
r(1)·100N=200Nm
r(1)=2m
Soaslongasweapplytheforceatadistanceofover2m,wecanlifttheobject.
Weeffectivelyamplifiedtheforcebyafactorof20.Scientistsbelievethatthe
principleofforceamplificationusingleverswasalreadyusedbytheEgyptians
tobuildthepyramids.Givenalongenoughlever,wecouldliftbasically
anythingevenwithamoderateforce.
--------------------------Inthenextsectionwewillseeanotherinterestingapplicationofthetorque
concept,sowe'renotdonewithitjustyet.Itwillleadtoaveryneatformulaall
carmakersmustknow.

SlidingandOverturning
Inthissectionwewilltakealookatcarperformanceincurves.Ofcentral
importanceforourconsiderationsisthecentrifugalforce.Wheneverabodyis
movinginacurvedpath,thisforcecomesintoplay.Youprobablyfeltitmany
timesinyourcar.Itistheforcethattriestopushyououtofacurveasyougo
throughit.

ThecentrifugalforceC(inN)dependsonthreefactors:thevelocityv(inm/s)of

www.pdfgrip.com


thecar,itsmassm(inkg)andtheradiusr(inm)ofthecurve.Giventhese
quantities,wecaneasilycomputethecentrifugalforceusingthisformula:
C=m·v²/r
Notethequadraticdependenceonspeed.Ifyoudoublethecar'sspeed,the
centrifugalforcequadruples.Withthisforceacting,theremustbeacounterforcetocancelitforthecarnottoslide.Thisforceisprovidedbythesideways
frictionofthetires.ThefrictionalforceF(inN)canbecalculatedfromtheso
calledcoefficientoffrictionμ(dimensionless),thecarmassmandthe
gravitationalaccelerationg(inm/s²).
F=μ·m·g
Thecoefficientoffrictiondependsmainlyontheroadtypeandcondition.On
dryasphaltwecansetμ≈0.8,onwetasphaltμ≈0.6,onsnowμ≈0.2andon
iceμ≈0.1.Atlowspeedsthefrictionalforceexceedsthecentrifugalforceand
thecarwillbeabletogothroughthecurvewithoutanyproblems.However,as
weincreasethevelocity,sodoesthecentrifugalforceandatacertaincritical
velocitytheforcescanceleachotherout.Anyincreaseinspeedfromthispoint
onwillresultinthecarsliding.
Wecancomputethecriticalspeeds(inm/s)byequatingtheexpressionsforthe
forces:
m·s²/r=μ·m·g
s=sqrt(μ·r·g)
Thisisthespeedatwhichthecarbeginstoslide.Notethatthere'sno
dependenceonmassanymore.Sinceboththecentrifugalaswellasthefrictional
forcegrowproportionallytothecar'smass,itdoesn'tplayaroleindetermining
thecriticalspeedforsliding.Allthat'sleftintermsofvariablesisthecoefficient
offriction(lowerfriction,lowercriticalspeed)andtheradiusofthecurve

(smallerradius,morenarrowcurve,smallercriticalspeed).
However,slidingisnottheonlyproblemthatcanoccurincurves.Undercertain

www.pdfgrip.com


circumstancesacarcanalsooverturn.Againthecentrifugalforceistheculprit.
Assumingthecenterofgravity(inshort:CG)ofthecarisataheightofh(inm),
thecentrifugalforcewillproduceatorqueTactingtooverturnthecar:
T=h·C=m·v²·h/r
Ontheotherhand,there'stheweightofthecargivingrisetoanopposingtorque
T'thatgrowswiththewidthw(inm)andmassmofthecar:
T'=0.5·m·g·w
Atlowspeeds,thetorquecausedbythecentrifugalforcewillbelowerthanthe
onecausedbythegravitationalpull.Butatacertaincriticalspeedo(inm/s),the
torqueswillcanceleachotherandanyfurtherincreaseinspeedwillresultinthe
caroverturning.Equatingtheaboveexpressions,weget:
m·o²·h/r=0.5·m·g·w
o=sqrt(0.5·r·g·w/h)
Asidefromthecoefficientoffriction,thedeterminingfactorhereistheratioof
widthtoheight.Thelargeritis,theharderitwillbeforthecentrifugalforceto
overturnthecar.Thisiswhyloweringacarwhenintendingtogofastmakes
sense.IfyoulowertheCGwhilekeepingthewidththesame,theratiow/h,and
thusthecriticalspeedforoverturning,willincrease.
Let'slookatsomeexamplesbeforedrawingafinalconclusionfromthesetruly
greatformulas.
--------------------------Accordingtocaranddriver.comthecenterofgravityofa2014BMW435iish=
0.5mabovetheground.Thewidthofthecarisaboutw=1.8m.Calculatethe
criticalspeedforslidingandoverturninginacurveofradiusr=300monadry
asphaltroad(μ≈0.8).

Nothingtodobuttoapplytheformulas:

www.pdfgrip.com


s=sqrt(0.8·300m·9.81m/s²)
s≈49m/s≈175km/h≈108mph
Sowithnormaldrivingbehavioryoucertainlywon'tgetanywherenearsliding.
Butnotethatsuddensteeringinacurvecancausetheradiusoftheyourcar's
pathtobeconsiderablylowerthantheactualcurveradius.
Ontothecriticaloverturningspeed:
o=sqrt(0.5·300m·9.81m/s²·3.6)
o≈73m/s≈262km/h≈162mph
NotevenMichaelSchumachercouldbringthiscartooverturn.
--------------------------Howwouldthecriticalspeedschangeifwedrovethe2014BMW435ithrough
thesamecurveonanicyroad?Inthiscasethecoefficientisconsiderablylower
(μ≈0.1).Forthecriticalslidingspeedweget:
s=sqrt(0.1·300m·9.81m/s²)
s≈17m/s≈62km/h≈38mph
Soeventhissweetsportcarisindangerofslidingrelativelyquicklyunderthese
conditions.Whatabouttheoverturningspeed?Well,ithasnothingtodowiththe
frictionofthetires,soitwillstillbeat73m/s.
--------------------------Slidingdoesnotalwaysendinanaccident.Whilesliding,acarwillusually
increasetheradiusofitspathandatthesametimedecreaseitsspeed.Bothof
theseeffectslowerthecentrifugalforceandthuscanbringthecarbackintoits
normaldrivingmodebeforeanaccidentoccurs.Ontheotherhand,onceacar

www.pdfgrip.com



startsoverturning,there'snogoingback.
Thisiswhywhendesigningacar,youwantittoslidebeforeitoverturns,sothe
criticalslidingspeedshouldbelowerthanthecriticalspeedforoverturning.
Usingtheformulas,wecanfindacriticalCGheightH(inm)byequatingthe
criticalspeeds:
s=o
H=0.5·w/μ
AslongastheCGisbelowthisheight,thecarwillstartslidingbefore
overturning.Sincewesawintheexamplethatthedifferencebetweenthecritical
speedsincreasesastheroadconditionsworsen,itissufficienttomakesurethat
theaboveequationholdstruefordryasphalt.Settingμ≈0.8,weget:
H≈0.63·w
Soasaruleofthumb,theheightoftheCGshouldbekeptbelow60%ofthe
width.OfcourseaccuratelydeterminingtheCGnotsomethingyoucandowith
aruler.Butitcanbeestimatedbymeasuringtheweightsoneachtireina
horizontalpositionandtheweightsonthefronttiresafterraisingthefront.With
thisdone,youcaninputthesemeasurementsintotheonlineCGcalculator
featuredonrobrobinette.com.

MaximumCarSpeed
Howdoyoudeterminethemaximumpossiblespeedyourcarcango?Well,one
ratherstraight-forwardoptionistojustgetintoyourcar,goontheAutobahnand
pushdownthepedaluntiltheneedlestopsmoving.Theproblemwiththisoption
isthatthere'snotalwaysanAutobahnnearby.Soweneedtofindanotherway.
Luckily,physicscanhelpusouthere.Youprobablyknowthatwheneverabody
ismovingatconstantspeed,theremustbeabalanceofforcesinplay.Theforce

www.pdfgrip.com



thatisaimingtoacceleratetheobjectisexactlybalancedbytheforcethatwants
todecelerateit.Ourfirstjobistofindoutwhatforceswearedealingwith.
Obviouscandidatesfortheretardingforcesaregroundfrictionandairresistance.
However,inourcaselookingatthelatterissufficientsinceathighspeeds,air
resistancebecomesthedominatingfactor.Thismakesthingsconsiderablyeasier
forus.Sohowcanwecalculateairresistance?
Tocomputeairresistanceweneedtoknowseveralinputs.Oneoftheseistheair
densityD(inkg/m³),whichatsealevelhasthevalueD=1.25kg/m³.Wealso
needtoknowtheprojectedareaA(inm²)ofthecar,whichisjusttheproductof
widthtimesheight.Ofcoursethere'salsothedependenceonthevelocityv(in
m/s)relativetotheair.Theformulaforthedragforceis:
F=0.5·c·D·A·v²
withc(dimensionless)beingthedragcoefficient.Thisistheonequantityinthis
formulathatistoughtodetermine.Youprobablydon'tknowthisvalueforyour
carandthere'sagoodchanceyouwillneverfinditoutevenifyoutry.In
general,youwanttohavethisvalueaslowaspossible.
Onecomodder.comyoucanfindatableofdragcoefficientsformanycommon
moderncarmodels.Excludingprototypemodels,thedragcoefficientinthislist
rangesbetweenc=0.25fortheHondaInsighttoc=0.58fortheJeepWrangler
TJSoftTop.Theaveragevalueisc=0.33.Infirstapproximationyoucan
estimateyourcar'sdragcoefficientbyplacingitinthisrangedependingonhow
streamlineditlookscomparedtotheaveragecar.
Withtheequation:powerequalsforcetimesspeed,wecanusetheabove
formulatofindouthowmuchpower(inW)weneedtoprovidetocounterthe
airresistanceatacertainspeed:
P=F·v=0.5·c·D·A·v³
Ofcoursewecanalsoreversethisequation.Giventhatourcarisabletoprovide
acertainamountofpowerP,thisisthemaximumspeedvwecanachieve:

www.pdfgrip.com



v=(2·P/(c·D·A))1/3
Fromtheformulawecanseethatthetopspeedgrowswiththethirdrootofthe
car'spower,meaningthatwhenweincreasethepowereightfold,themaximum
speeddoubles.Soevenaslightincreaseintopspeedhastobeboughtwitha
significantincreaseinenergyoutput.
Notethewehavetoinputthepowerinthestandardphysicalunitwattrather
thantheoftenusedunithorsepower.Luckilytheconversionisveryeasy,just
multiplyhorsepowerwith746togettowatt.
Let'sputtheformulatothetest.
--------------------------IdriveatenyearoldMercedesC180Compressor.AccordingtheMercedes-Benz
homepage,itsdragcoefficientisc=0.29anditspowerP=143HP≈106,680
W.Itswidthandheightisw=1.77mandh=1.45mrespectively.Whatisthe
maximumpossiblespeed?
Firstweneedtheprojectedareaofthecar:
A=1.77m·1.45m≈2.57m²
Nowwecanusetheformula:
v=(2·106,680/(0.29·1.25·2.57))1/3
v≈61.2m/s≈220.3km/h≈136.6mph
FrommyexperienceontheAutobahn,thisseemstobeveryrealistic.Youcan
reach200Km/hquitewell,buttheaccelerationisalreadynoticeablylowerat
thispoint.
IfyouevergetthechancetovisitGermany,makesuretorentaridiculouslyfast
sportscar(youcanrentaPorsche911Carreraforaslittleas200$perday)
andfindanicesectionontheAutobahnwithunlimitedspeed.Butremember:

www.pdfgrip.com



unlessyou'reovertaking,alwaysusetherightlane.Theleftlanesarereserved
forovertaking.Neverovertakeontherightside,nobodywillexpectyouthere.
Andmakesuretochecktherear-viewmirroroften.Youmightthinkyou'regoing
fast,butthere'salwayssomeonegoingevenfaster.Letthempass.Lastbutnot
least,stayfocusedandkeepyoureyesontheroad.Trafficjamscanappearout
ofnowhereandyoudon'twanttoendupinthebackofatruckatthesespeeds.
--------------------------ThefastestproductioncaratthepresenttimeistheBugattiVeyronSuperSport.
Ishasadragcoefficientofc=0.35,widthw=2m,heighth=1.19mand
powerP=1200HP=895,200W.Let'scalculateitsmaximumpossiblespeed:
v=(2·895,200/(0.35·1.25·2·1.19))1/3
v≈119.8m/s≈431.3km/h≈267.4mph
Doesthisseemunreasonablyhigh?Itdoes.Butthecarhasactuallybeen
recordedgoing431Km/h,sowearerightontarget.Ifyou'dliketopurchasethis
car,makesureyouhave4,000,000$inyourbankaccount.
--------------------------Toconcludethissection,let'sdoaveryroughestimateonhowlongittakesacar
toreachitsmaximumspeedv.Atthisspeedthecar'skineticenergyisE=0.5·
m·v².IfthecarcontinuouslyproducesthemaximumpowerP,thisishowlong
ittakestoprovidetheaboveamountofenergy:
t=0.5·m·v²/P
withtbeinginseconds.Notethatsincethespeedgrowswiththethirdrootofthe
power,thetimeittakestoreachmaximumspeedshouldbeinversely
proportionaltothethirdrootofthepower.Soifyouincreasethepower
eightfold,itwilltakeonlyhalfaslongtogototopspeed.Alsonotethatherethe
massofthecarisalsoafactor.
---------------------------

www.pdfgrip.com


WedeterminedthatfortheMercedesC180Compressorthetopspeedisv=61.2

m/s.GiventhepowerP=143HP≈106,680Wandthemassm=1,600kg,
estimatehowlongittakestoreachthemaximumspeed.
Weapplytheformula:
t=0.5·1,600·61.2²/106,680
t≈28.1s
Thisisofcourseassumingthatwecouldconstantlyproducethemaximumpower
(whichisnotthecase).Butthevalueneverthelessseemsquiterealistic
consideringthecarcangoto100Km/h(abouthalfthetopspeed)in9seconds
andtheaccelerationwouldbesignificantlyslowerinthesecondhalf.
--------------------------WhatabouttheBugattiVeyronSuperSport?Howlongdoesittaketogetitupto
itstheoreticaltopspeedofv=119.8m/s?Themassofthecarism=1900kg,
henceweget:
t=0.5·1,800·119.8²/895,200
t≈15.2s
SonotonlydowereachtwicethetopspeedoftheMercedesC180Compressor,
wegettheremorethan10secondsearlier.Bytheway,theaverageacceleration
duringthiswouldbe:
a=v/t=119.8/15.2≈7.9m/s²
whichiscomparabletowhatwe'dexperienceinfreefall.Andthisisjustthe
average.Itactuallygoesfrom0to100Km/h(27.8m/s)inonly2.2seconds,
whichtranslatesintoanaccelerationof:
a=27.8/2.2≈12.6m/s²

www.pdfgrip.com


--------------------------Trythesecalculationsforyourowncar.Ifyou'reluckyyou'llfinditsdrag
coefficientonline.Ifnot,justestimateitfromrangeprovidedinthissection.You
shouldn'tbeoffbytoomuch.


RangeContinued
Inthefirstvolumeofthisbookwehadalookathowfaranobjectthrownfrom
thegroundatacertainvelocityandanglegets.We'lltakeyetanotherlookat
range,butthistimeforadifferentsetup.Assumewethrowanobject
horizontallyataspeedofv(inm/s)fromtheheighth(inm)abovetheground.
Whathorizontaldistancewillitcoverbeforehittingtheground?

Well,inx-direction(whichisthehorizontalaxis),theobjectwillkeepon
movingatthevelocityvwhenneglectingairresistance:
x=v·t
Iny-directionitissubjecttotheconstantgravitationalaccelerationg=9.81
m/s².Sotheheightwilldecreaseaccordingtothisformula:
y=h-0.5·g·t²
Wecangetridoftimebyusingt=x/vandpluggingthatintothesecond

www.pdfgrip.com


formula.
y=h-0.5·g·x²/v²
Thisisthecoordinateformoftheparabolicpaththeobjecttakes.Wewantto
knowatwhatvaluex=Ritimpactstheground(y=0).Withtheaboveequation
thisiseasytodo.Weset:
0=h-0.5·g·R²/v²
Andsolvefortherange:
R=v·sqrt(2·h/g)
Injustafewstepswederivedagreatformulathatallowsustocomputethe
rangefromtheinitialvelocityoftheobjectandtheinitialheight.Let'stalkabout
thenatureofthedependencies.Therangegrowslinearlywithvelocity.Ifthe
velocitydoubles,sodoestherange.Asfortheheight,quadruplingitwillalso

leadtoadoublinginrange.
Beforewegoontotheexamples,let'stakeacloserlookattheimpactitself.We
mightbeinterestedinknowingatwhatspeedandatwhatangletheobject
impactstheground.Howcanwecomputethesequantities?Againthekeyisto
analyzethex-andy-directionseparately.
Asstated,thespeedinx-directionwillremainequaltotheinitialspeed,sov(x)
=v.Andaccordingtotheformula:speedequalsaccelerationmultipliedbytime,
thespeediny-directionaftertimetwillbe:v(y)=g·t.
Let'sgetridoft.Howlongdoesittaketheobjecttohittheground?Thisiseasy.
Wealreadyknowthatittakestheobjectthetimet=x/vtocoverthehorizontal
distancex.Sothetimetoimpactisjust:
t=R/v=sqrt(2·h/g)
Nowweareabletocomputethespeediny-directionatthetimeofimpact.
Insertingthisexpressionfortintov(y)=g·tleadsto:

www.pdfgrip.com


v(y)=sqrt(2·g·h)
Sincethex-andy-velocitiesareatarightangletoeachother(seeimagebelow),
thetotalspeedcanbecomputedusingPythagoras'theorem:
w=sqrt(v(x)²+v(y)²)
Allthat'sleftisinsertingtheappropriateexpressionsandweareleftwitha
handyformulaforcalculatingthetotalimpactspeedw(inm/s).
w=sqrt(v²+2·g·h)

Whatabouttheangleofimpactθ?Forthatwewillneedsometrigonometry.
Rememberthatinthetangentformulaweusetheratio:oppositetoadjacent.In
ourcasetheoppositeisthespeediny-directionandtheadjacentthespeedinxdirection.Hencewecanwrite:
tanθ=sqrt(2·g·h)/v

Notethatthevelocityvisnotpartofthesquareroot.Therelationshipis
somewhatcomplex,butingeneralwecanconcludethatthelargertheratioof
initialheighttoinitialspeedis,thesteepertheimpactwillbe.
Afterallthiswork,let'sgototheexamples.
---------------------------

www.pdfgrip.com


Aballrollsovertheedgeofatableofheighth=1mataspeedofv=3m/s.At
whathorizontaldistancetotheedgeofthetablewillitland?Atwhatspeedand
angledoesitimpacttheground?Firstlet'stakealookthetherange:
R=3m/s·sqrt(2·1m/9.81m/s²)
R≈1.35m
Soitwilllandatadistanceof1.35mfromthetable.Nowlet'sturntotheimpact
speed:
w=sqrt((3m/s)²+2·9.81m/s²·1m)
w≈5.35m/s
Sotheball'sspeedincreasessignificantly(byabout80%)duringthefall.The
angleofimpactis:
tanθ=sqrt(2·9.81m/s²·1m)/3m/s
tanθ≈1.48
Usingtheinversefunctionweget:
θ≈arctan(1.48)≈55.9°
--------------------------Weholdagardenhosehorizontallyataheightofh=0.5mandturnonthe
water.ThewaterjethitsthegroundatadistanceofR=1.5m.Atwhatspeedis
thewaterexitingthehose?Fromtherangeformulawecansetupanequation
fortheinitialspeedvusingthegivenvalues(we'llignoretheunitsforsakeof
simplicity):
1.5=v·sqrt(2·0.5/9.81)

4≈v·0.32

www.pdfgrip.com


Divideby0.32:
v≈12.5m/s
--------------------------Justafterjumpingoutofthevehicle,theowner'sbrandnewcargoesoveracliff
ofheighth=15m.Thepolicedeterminefromtheimpactcraterthattheangleof
impactwasaboutθ=25°.Theownerinsistthathewasbelowthe100Km/h
limitatthetimeoftheaccident.Ishetellingthetruth?
Let'scalculatetheinitialspeedvandcomparetheresulttothelimit.Fromthe
formulafortheangleofimpactwecansetupthisequation:
tan(25°)=sqrt(2·9.81·15)/v
0.47≈17.16/v
Multiplybyv:
0.47·v≈17.16
Nowdivideby0.47:
v≈36.5m/s
Sothisisthespeedatwhichthecarwentoverthecliff.Howdoesthatcompare
tothespeedlimit?Well,36.5m/sare131.4km/h,sohewassignificantlyover
thelimit.
--------------------------ToconcludethissectionI'llgiveyouanotherrelevantformulayouwillhardly
findinanyotherphysicsbook.Itispossibletocomputethetotaldistance
coveredbytheobject(=thelengthoftheparabolicarc).Sincethederivation
requiresatripdeepintotherealmsofintegralcalculus,I'llskipitentirelyandgo

www.pdfgrip.com



righttotheformulaforthearclength.Braceyourself:
s=sqrt(R²+4·h²)+(0.5·R²/h)·arcsinh(2·h/R)
witharcsinhbeingtheinversefunctionofthehyperbolicsinefunction(your
calculatorshouldknowthisone).Granted,thisisamonster.Butitworks.And
onceweknowthetotaldistancecovered,wecangoontocalculatetheaverage
speed<v>:
<v>=s/t=s·v/R
Let'sgiveitatry.
--------------------------Let'sgobacktothesecondexamplewherewehadwaterflowingoutofahoseat
aheightofh=0.5m.TherangewasR=1.5m.Whatisthelengthofthewater
jetfromhosetoground?Weapplythemonsterformula:
s=sqrt(3.25)+2.25·arcsinh(0.67)
s≈3.21m
Onceyoufigureouthowwheretheinversehyperbolicsinefunctionisonyour
calculator,thisisn'tactuallysobad.
--------------------------Asyoucansee,eveninsuchasimpleandbasicsituationasfreefallthere'salot
ofinterestingphysicsandevensomehard-coremathinvolved.Anditgetseven
worseonceyouwanttoincludeairresistance(don'ttrythisathome!).

EscapeVelocity

www.pdfgrip.com


Ifyouthrowanobjectupwards,gravitywillforceittocomebackdownquickly.
Afterall,whatgoesupmustcomedown.Unlessit'sgoingfasterthantheescape
velocity,inwhichcaseitindeedwillbeabletoescapeaplanet'sormoon's
gravitationalprison.Inthissectionwewillderiveandapplyaformulathat
allowsustocalculatesaidescapevelocity(undertheassumptionoftherebeing
noatmospherepresent).

Toderiveaformulaweneedtothinkabouthowmuchenergyisneededtomove
anobjectfromonepointtoanotherinagravitationalfield.Mostpeoplehere
wouldsay(ifthey'dsayanything):justusethisformulaforthepotentialenergy.
E(pot)=m·g·h
Fromthiswecancomputehowmuchenergyisneededtoelevateanobjectof
massm(inkg)byaheightofh(inm).Problemsolved?Yesandno.This
formulaworksaslongasthechangeinheightisnottoogreat.Forpeople,
elevators,planesandevenhigh-altitudeballoonsitworksjustfine.Butfor
satellitesandspaceships(aswellasforcalculatingtheescapevelocity)it
unfortunatelyfails.Soweneedsomethingmoreprecise.
Luckily,withNewton'sformulaforthegravitationalforceandsomecalculus,we
canderivethisformulathatallowsustofindouttheenergyneededtobringan
objectfromthesurfaceofacelestialbodytoacertainheight:
E(pot)=G·M·m·(1/R-1/(R+h))
withM(inkg)beingthemassofthecelestialbody,R(inm)itsradiusandGthe
gravitationalconstant.Itsvalueis:G≈6.67·10-11Nm²kg²throughoutthe
universeandforallbodies.Itcan'tgetmoreconstantthanthat,Isuppose.
Tocalculatehowmuchenergyisneededtocompletelyfreeanobjectofa
gravitationalfield,welettheheightgotoinfinity,whichweexpress
symbolicallyassuch:h→∞.Thesecondtermintheaboveformulathenjust
disappears,leavingthismuchnicerexpression:
E(pot,∞)=G·M·m/R

www.pdfgrip.com


Thisistheenergyweneedtoprovideanobjectwithsothatitcanleaveaplanet
forgood(assumingnoatmospherepresent).Howdoesthistranslateintoa
velocity?Well,weknowthatanobjectwithvelocityv(inm/s)hasthekinetic
energyE(kin)=0.5·m·v².Sowecanfindtheescapevelocitybyequatingthe

kineticenergywiththepotentialenergy:
E(kin)=E(pot,∞)
0.5·m·v²=G·M·m/R
Solvingforvweget:
v=sqrt(2·G·M/R)
Thisistheescapevelocity.Notethatitdoesnotdependonthemassoftheobject
thatistobeshotintospaceinanyway.Alltheparametersintheformulareferto
thecelestialbodyonly.Anditallcomesdowntotheratioofmasstoradius.The
greaterthisis,thehighertheescapevelocitywillbe.

Let'sderiveanalternateformtotheaboveequationthatwillallowustogo
aroundhavingtodealwithverylow(G)orveryhigh(M)numbers.From
Newton'slawofgravitationwecanquicklyshowthatacelestialbody's
gravitationalaccelerationatthesurface(denotedbygandwell-knownformany
bodieswithinoursolarsystem)is:

www.pdfgrip.com


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×