Tải bản đầy đủ (.pdf) (57 trang)

(LUẬN văn THẠC sĩ) nghiên cứu, chế tạo và ứng dụng cảm biến sinh học dựa trên cấu trúc nano silicon luận văn ths vật liệu và linh kiện nanô (chuyên ngành đào tạo thí điểm)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.77 MB, 57 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH
PTN CƠNG NGHỆ NANO

NGUYỄN VĂN QUỐC

NGHIÊN CỨU, CHẾ TẠO VÀ ỨNG DỤNG
CẢM BIẾN SINH HỌC DỰA TRÊN CẤU
TRÚC NANO SILICON

LUẬN VĂN THẠC SĨ

Thành phố Hồ Chí Minh - 2010

TIEU LUAN MOI download :


MỤC LỤC
TRANG PHỤ BÌA ........................................................................................................i
LỜI CẢM ƠN...............................................................................................................ii
LỜI CAM ĐOAN........................................................................................................iii
MỤC LỤC ...................................................................................................................iv
DANH MỤC CÁC CHỮ VIẾT TẮT .........................................................................vi
DANH MỤC CÁC HÌNH VẼ....................................................................................vii
MỞ ĐẦU .................................................................................................................. viii
CHƯƠNG I TỒNG QUAN..........................................................................................1
I . Lịch sử phát triển Cảm biến sinh học (biosensor)........................................ 1
II. Cảm biến sinh học dựa trên cấu trúc của sợi nano (nanowire based
biosensors)..........................................................................................................3


CHƯƠNG II: QUI TRÌNH DEA VÀ CÁC KĨ THUẬT DÙNG ĐỂ CHẾ TẠO
SỢI NANO SILICON ..................................................................................................7
I. Qui trình Deposition and Etching under Angle (DEA) để chế tạo sợi
nano silicon ......................................................................................................7
II. Các kĩ thuật cơ bản sử dụng trong qui trình DEA.......................................12
II.1 Cơng nghệ quang khắc .....................................................................12
II.2 Cơng nghệ ăn mịn thẳng đứng..........................................................17
II.3 Kỹ thuật tạo màng mỏng kim loại dị hướng......................................18
III.4 Kỹ thuật ăn mòn dị hướng màng kim loại .......................................22
CHƯƠNG III CHẾ TẠO SỢI NANO SILICON BẰNG PHƯƠNG PHÁP
DEA VÀ KẾT QỦA CHẾ TẠO ................................................................................24
I. Chế tạo sợi bằng Qui trình DEA..................................................................24
II. Kết quả chế tạo ............................................................................................27
II.1 Kích thước và tính chất bề mặt ............................................................27
II.2 Tính chất điện.......................................................................................28
CHƯƠNG IV KHẢO SÁT KHẢ NĂNG PHÁT HIỆN DNA CỦA CẢM BIẾN ....30
I. Biến đổi bề mặt sợi Si-NWs .......................................................................30
I.1 Tạo sự đồng nhất trên bề mặt sợi có lớp SiO2 ......................................30
I.2 Tạo sự đồng nhất trên bề mặt sợi Si không có SiO2 .............................35
II Định lượng DNA bằng cảm biến sinh học Si- NWs ..............................40
iv

TIEU LUAN MOI download :


II1 Ly trích DNA của bắp chuyển gene..............................................................40
II2 Phát hiện bắp chuyển gen bằng cảm biến Si-NWs .......................................42
KẾT LUẬN ................................................................................................................45
TÀI LIỆU THAM KHẢO..........................................................................................46


v

TIEU LUAN MOI download :


DANH MỤC CÁC CHỮ VIẾT TẮT
AFM
APTES
BOX
DEA
DNA
FET
HDP
IBE
LPVCD
PNA
PTN CNNN
PECVD
RNA
RIE
Si – NW
SOI
TFA
UV

Automic Force Microscope, kính hiển vi lực nguyên tử
AminoPropylTriEthoxySilane
Buried oxide lớp oxít bên trong
Deposition and Etching under Angles, lắng đọng và ăn mịn
theo góc nghiên

Deoxyribo Nucleic Acid
Field Effect Transistor, Tranzitor hiệu ứng trường
High Density Plasma Plasma mật độ cao, áp suất thấp
Ion Beam Etching ăn mòn bằng chùm ion
Low Pressure Chemical Vapour Deposition, phương pháp lắng
đọng hơi hóa học áp suất thấp
Peptide Nucleic Acid
Phịng Thí Nghiện Cơng Nghệ NaNo
Plasma Enhanced Chemical Vapor Deposition lắng đọng hoá
học pha hơi kèm hỗ trợ plasma
RiboNucleic Acid
Reactive Ion Etching, phản ứng ăn mòn ion
Silicon Nano Wire, sợi nano silic
Silicon On Insulator, slic trên đế điện môi
TriFluoroacetic Acid
Utra Violet, tia cực tím

vi

TIEU LUAN MOI download :


DANH MỤC HÌNH VẼ
Hình 1: Mơ hình cảm biến sinh học đầu tiên ............................................................ 1
Hình 2: Ngun lí hoạt động và cấu trúc của bộ kít nano sinh học dựa trên sợi nano
................................................................................................................................... 4
Hình 3: Sử dụng bộ kít sợi nano để phát hiện nhanh ................................................ 6
Hình 4: Sơ đồ khối các bước cơng nghệ cơ bản của qui trình DEA....................... 10
Hình 5: Mơ hình mặt nạ .......................................................................................... 13
Hình 6: Quy trình quang khắc................................................................................. 13

Hình 7: Cách phủ lớp photoresist............................................................................ 15
Hình 8: Các phương pháp chiếu.............................................................................. 16
Hình 9: Cấu tạo hệ ăn mịn ion phản ứng................................................................ 18
Hình 10: Cấu tạo hệ bốc bay chân khơng cơ bản.................................................... 19
Hình 11: Màng bay hơi trên bậc thang........................................................................ 19
Hình 12: Nguồn bay hơi bằng chùm tia điện tử.......................................................... 21
Hình 13: Sơ đồ hệ ăn mịn phún xạ. ....................................................................... 23
Hình 14: Hình ảnh SEM và AFM của sợi nano silicon chế tạo ra.......................... 27
Hình 15 : Đặc trưng I-V của sợi nano silicon dài 10 micron.................................. 28
Hình 16 : Các chất sử dụng để silane hóa. .............................................................. 31
Hình 17: Cơ chế phản ứng của q trình silan hố. ................................................ 31
Hình 18: Ảnh SEM của bề mặt wafer silic sau khi xử lý bằng dung dịch APTES. 32
Hình 19: Sợi silicon trước khi gắn glutaraldehyte .................................................. 32
Hình 20: Ảnh SEM của bề mặt wafer sau khi xử lý bằng dung dịch glutaraldehyde.
................................................................................................................................. 33
Hình 21: Sau khi gắn thụ thể là PNA...................................................................... 33
Hình 22: Cơ chế khử lớp SiO2 trên mặt sợi Si-NWs. ............................................. 35
Hình 23: Sợi silic sau khi gắn 10-N-BOC. ............................................................. 36
vii

TIEU LUAN MOI download :


Hình 24: Loại bỏ các nhóm chức bảo vệ gốc amin................................................. 36
Hình 25: Lớp bề mặt của sợi sau khi xử lý qua TFA và NH4OH ........................... 36
Hình 26: Lớp bề mặt của sợi sau khi gắn thụ thể là PNA....................................... 37
Hình 27: Sản phẩm ly trích DNA của bắp chuyển gene. ........................................ 41
Hình 28: Hệ thiết bị để tiến hành ghi lại sự thay đổi của dòng điện chạy qua sợi . 42
Hình 29 : Đặc trưng I-t của chíp sạch (chip chưa biến đổi bề mặt sợi) cho thấy
dịng điện qua sợi khơng thay đổi khi cho dung dịch chứa DNA đi qua................ 43

Hình 29: Đặc trưng I-t của chíp chip chưa biến đổi bề mặt sợi và chíp đã biến đổi
bề mặt khi cho dung dịch chứa 1 nM DNA ........................................................... 43

viii

TIEU LUAN MOI download :


PHẦN MỞ ĐẦU
Phát hiện và định lượng nhanh các phần tử sinh học như glucose,
protein, ADN… ở nồng độ siêu nhỏ là một yêu cầu vô cùng quan trọng
trong nhiều lĩnh vực nghiên cứu và ứng dụng của các ngành sinh học, y
tế, dược phẩm và nơng nghiệp… Ví dụ thông qua việc phát hiện các
protein đặc trưng (protein markers), ADN đột biến (gen mutation),
kháng nguyên và kháng thể (antibodies, antigents), glucose… trong
bệnh phẩm, cho phép chẩn đốn nhanh, chính xác nhiều bệnh nguy hiểm
như ung thư, lây nhiễm virus, sản phẩm đột biến gen, tiểu đường…
Những thành tựu đột phá trong lĩnh vực sinh học phân tử và y sinh gần
đây đã xác định được trên 140 chất đánh dấu sinh học (biological
markers) như vậy, mở ra những khả năng hoàn toàn mới cho nghiên cứu
và ứng dụng trong các ngành khoa học liên quan như sinh học, y học,
dược phẩm, nơng nghiệp…
Có nhiều kĩ thuật và phương pháp đã và đang được sử dụng để
phân tích và định lượng các phần tử sinh học trên như kĩ thuật ELISA,
Polymer Chain Reaction (PCR), Surface Plosmon Resonance (SPR),
cộng hưởng từ, phân tích hóa học… Tuy thế, chưa có phương pháp nào
trong các phương pháp truyền thống này có đầy đủ khả năng cho phép
phát hiện nhanh, chính xác, đồng thời các phân tử sinh học nói trên. Do
đó việc nghiên cứu, chế tạo ra một thế hệ cảm biến mới có khả năng như
thế đang được đặc biệt quan tâm và đầu tư nghiên cứu.

Và một khả năng đặc biệt quan trọng đối với các thiết bị phân tích
hiện nay cần được nghiên cứu, nâng cao đó là độ nhạy. Ví dụ việc phát
hiện nhanh các chất đánh dấu sinh học nói trên ở nồng độ siêu nhỏ
(trong khoảng nM-fM), sẽ cho phép chẩn đoán được bệnh trong thời
gian tiền nhiễm bệnh. Trong thời gian này, các phương pháp y học (cả
truyền thống và hiện đại) đều phát huy rất hiệu quả trong việc chữa trị,
thậm chí với những bệnh hiểm nghèo như ung thư. Gần đây, nghiên cứu
của các nhà y học Anh cho thấy, nếu bệnh ung thư tuyến tiền liệt được
phát hiện trong giai đoạn sơ khởi (tiền nhiễm bệnh), thì bệnh nhân
khơng cần dùng đến các phương pháp can thiệp của y học hiện đại (tốn
kém, nhiều ảnh hưởng phụ). Trong trường hợp này, bệnh nhân chỉ cần

TIEU LUAN MOI download :


uống nhiều nước, ăn nhiều rau quả, tránh căng thẳng (tress), thì bệnh
gần như khơng phát triển hoặc thậm chí khỏi hẳn.
Cảm biến sinh học trên cơ sở sợi nano silicon (Silicon
nanowire biosensors): Sợi nano được định nghĩa là vật liệu ở dạng sợi
với đường kính sợi trong khoảng 1-100 nm. Như thế, chúng ta phải bó ít
nhất 1 triệu sợi nano lại với nhau để có một vật thể có kích thước ngang
bằng sợi tóc người với đường kính trung bình là 100 micron. Khi ở dạng
siêu nhỏ sợi nano, phần lớn các lớp nguyên tử cấu tạo nên sợi sẽ nằm
trên bề mặt, dẫn đến các tính chất của sợi, đặc biệt là điện trở của sợi,
rất nhạy với các thay đổi của mơi trường bên ngồi. Tính chất này làm
sợi nano trở thành vật liệu lí tưởng để chế tạo các cảm biến sinh học thế
hệ mới - cảm biến sinh học sợi nano - với khả năng hồn tồn mới mà
linh kiện truyền thống khơng có được. Do đó, việc nghiên cứu qui trình
cơng nghệ, chế tạo ra các cảm biến sợi Si-NWs và ứng dụng cảm biến
loại này vào phân tích sinh học đã và đang được quan tâm đặc biệt, và

được tiến hành ở các nhóm nghiên cứu thuộc các Đại học hàng đầu trên
thế giới và trong nước.
Mục tiêu của luận văn Thạc sĩ này là: “Nghiên cứu, chế tạo và
ứng dụng cảm biến sinh học dựa trên cấu trúc nano silicon”. Đề tài
được thực hiện, sử dụng các thiết bị chế tạo và đo đạc tại Phịng thí
Nghiệm Cơng Nghệ Nano, ĐHQG Tp.HCM.
Nội dung nghiên cứu được trình bày trong các phần chính sau:
Chương 1 – Tổng quan
- Giới thiệu sơ lược về cảm biến sinh học.
- Giới thiệu về cảm biến sinh học
Chương 2 – Qui trình DEA và các kĩ thuật dùng để chế tạo
sợi nano silicon
- Qui trình chế tạo deposition and etching under angle (DEA)
- Các kĩ thuật và công nghệ cơ bản của DEA để chế tạo sợi
nano silicon
Chương 3 – Chế tạo sợi nano bằng phương pháp DEA và
kết quả chế tạo

TIEU LUAN MOI download :


- Chi tiết các bước chế tạo sợi nano silicon bằng phương
pháp DEA
- Kêt quả chế tạo
Chương 4 – Khảo sát khả năng phát hiện DNA của cảm
biến
- Biến đổi bề mặt sợi silicon thích hợp cho việc gắn thụ thể
- Đo đạc, phát hiện DNA của cây bắp chuyển gen.
Kết luận


TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

CHƯƠNG 1
TỔNG QUAN
I. Lịch sử phát triển cảm biến sinh học (biosensor)
Theo IUPAC (International Union of Pure and Applied Chemistry) thì:
“Cảm biến sinh học (biosensor) là một thiết bị tích hợp có khả năng cung cấp
thơng tin phân tích định lượng hoặc bán định lượng đặc trưng, bao gồm phần
tử nhận biết sinh học (bioreceptor) kết hợp trực tiếp với một phần tử chuyển
đổi.” Cảm biến sinh học là thiết bị sử dụng các tác nhân sinh học như enzym,
các kháng thể,... để phát hiện, đo đạc hoặc phân tích hố chất. Do vậy cấu tạo
của cảm biến sinh học bao gồm 3 thành phần cơ bản: thành phần hoá học,
thành phần sinh học và thành phần vật lý.

Hình 1: Mơ hình cảm biến sinh học đầu tiên.
Giáo sư Leyland D.Clark được biết như là người đi tiên phong trong lĩnh
vực cảm biến sinh học. Năm 1956 ông cơng bố bài báo đầu tiên về điện cực
oxy hố. Những năm tiếp theo ông tiếp tục thực hiện rất nhiều thí nghiệm
nhằm cố gắng mở rộng khả năng hoạt động của cảm biến như phát hiện được
thêm nhiều tác nhân, nâng cao độ chính xác của cảm biến. Vào năm 1962, tại
hội nghị New York Academy of Science, ông đã thuyết trình một bài về cảm
biến sinh học: “To make electrochemical sensors (pH, polarographic,
potentiometric or conductometric) more intelligent by adding enzyme
1

TIEU LUAN MOI download :



Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

transducers as membrane enclosed sandwiches”. Ông đưa ra mơ hình đầu tiên
về cảm biến sinh học.
Cảm biến sinh học theo mơ hình của D.Clark bao gồm điện cực oxy hóa,
trên đó có màng giữ enzyme glucose (glucose oxidase). Khi mật độ glucose
trong mơi trường phản ứng giảm thì mật độ chất oxi hóa trên bề mặt điện cực
cũng giảm một cách tương ứng. Dựa trên sự thay đổi đó, Clark đã phát hiện ra
sự thay đổi của nồng độ glucose trong môi trường cần kiểm tra.
Những năm tiếp theo, nhóm của Guilbault và Montalvo lần đầu tiên cơng
bố chi tiết về chế tạo thành công cảm biến sinh học dựa trên điện cực chứa
enzyme đo điện thế, một cảm biến đo nồng độ urê dựa trên điện cực cố định
enzyme urê (urease) bằng màng chất lỏng chọn lọc NH4+.
Năm 1975 Lubber và Opitz đã mô tả một cảm biến sợi quang (fibre-optic
sensor) gắn các chất chỉ thị dùng để đo nồng độ CO2 và O2. Cũng vào năm
1975, một số vi khuẩn cũng đã được sử dụng như những thành phần sinh học
trên các điện cực vi sinh để đo nồng độ cồn.
Năm 1975 công ty Yellow Springs Instrument (Ohio) lần đầu tiên biến ý
tưởng của Clark thành hiện thực thơng qua việc thương mại hóa các cảm biến
sinh học. Sản phẩm đầu tiên là thiết bị phân tích glucose dựa trên hydrogen
peroxide và đó cũng là cột mốc đầu tiên đánh dấu sự xuất hiện của các cảm
biến sinh học trong đời sống.
Vào năm 1982, Shichiri và các đồng nghiệp đã báo cáo và mô tả về cảm
biến glucose in vivo, là loại cảm biến dạng kim đầu tiên cho các xét nghiệm
dưới da.
Trong thập kỉ vừa qua, cùng với sự phát triển nhanh chóng của khoa học
và công nghệ, đặc biệt là các ngành công nghệ vật liệu và chế tạo nano , cảm
biến sinh học thế hệ mới- cảm biến nano sinh học - cũng đạt được những tiến
bộ vượt bậc. Trong cấu trúc của cảm biến nano sinh học, các điện cực hay phần

nhạy của thiết bị truyền thống bây giờ được thay thế bằng các vật liệu và linh
kiện nano có độ nhạy cao hơn. Ví dụ các điện cực micro trước đây được thay
thế bằng các cấu trúc nano như ống nano cacbon hay sợi nano của vật liệu bán
dẫn hoặc kim loại với độ nhạy ở mức đơn phân tử (single molecule) mà cấu
trúc micro khơng có khả năng này. Ngồi ra, những thành tựu đột phá trong
lĩnh vực sinh học phân tử và y sinh gần đây đã xác định được trên 140 chất
đánh dấu sinh học (biological markers), giúp nâng cao đáng kể độ đặc hiệu của
cảm biến sinh học nói chung. Và sự kết hợp các ưu việt của công nghệ nano
2

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

(vật liệu và linh kiện nano với độ nhạy cao) với công nghệ sinh học (độ đặc
hiệu cao của chất đánh dấu sinh học) đã chế tạo ra những thế hệ cảm biến mới
có khả năng xác định nhanh, chính xác, với độ đặc hiệu cao các phần tử sinh
học quan trọng như DNA, proteins, vi khuẩn, virut gây bệnh…. Có rất nhiều
cảm biến nano sinh học đã và đang được nghiên cứu, phát triển trong thời gian
qua và mỗi loại có những ưu điểm khác nhau. Tuy nhiên trong luận văn này
chúng tôi tập trung nghiên cứu về công nghệ chế tạo và ứng dụng của cảm biến
sinh học dựa trên cấu trúc của sợi nano silicon.
II. Cảm biến sinh học dựa trên cấu trúc của sợi nano (nanowire based
biosensors).
Sợi nano được định nghĩa là vật liệu ở dạng sợi với đường kính sợi trong
khoảng 1-100 nm. Như thế, chúng ta phải bỏ ít nhất 1 triệu sợi nano lại với
nhau để có một vật thể có kích thước ngang bằng sợi tóc người với đường kính
trung bình là 100 micron. Khi ở dạng siêu nhỏ sợi nano, phần lớn các lớp
nguyên tử cấu tạo nên sợi sẽ nằm trên bề mặt, dẫn đến các tính chất của sợi,

đặc biệt là điện trở của sợi, rất nhạy với các thay đổi của mơi trường bên
ngồi. Tính chất này làm sợi nano trở thành vật liệu lí tưởng để chế tạo các
cảm biến sinh học thế hệ mới – bộ kít sinh học sợi nano - với khả năng hồn
tồn mới mà linh kiện truyền thống khơng có. Cấu tạo và nguyên lí làm việc
của bộ kít sinh học sợi nano được minh họa trong Hình 2.
Về mặt tổng thể, bộ kít sợi nano sinh học hoạt động dựa trên nguyên lí
làm việc của transitor hiệu ứng trường (Field Effect Transistor - FET), một linh
kiện phổ biến và truyền thống nhất của công nghệ vi điện tử. Các khả năng làm
việc ưu việt của bộ kít sợi nano có thể được trình bày vắn tắt dưới đây:

3

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

(d)
Hình 2: Ngun lí hoạt động và cấu trúc của bộ kít nano sinh học dựa trên sợi
nano là sợi bán dẫn silic loại P có chứa các hạt dẫn mang điện dương. Hai
đầu sợi nano có các tiếp xúc điện (khơng mơ tả trong hình vẽ) để cho dòng
điện chạy qua sợi nano. Trên bề mặt sợi được thụ động hóa các mồi sinh học
(bioreceptor) để bắt cặp với các tumour markers cần phát hiện. (a) Sự bắt cặp
của các receptors/biomarkers diễn ra trên bề mặt sợi, diễn ra khi dung dịch có
chứa các tumour markers được cho chảy qua sợi nano. Các tumour marker,
phần lớn là các chất sinh học có tích điện làm tăng (b) hoặc giảm dịng điện
chạy qua sợi (c). Bộ kít chứa nhiều sợi nano, cho phép phát hiện cùng lúc
nhiều markers khác nhau, nâng cao độ chính xác của phép chẩn đoán bệnh (d).
4


TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

i.

Chỉ cần một vài phân tử biomarkers từ dung dịch hoặc khơng khí
bám lên bề mặt sợi cũng đủ làm thay đổi đáng kể điện trở của sợi tính siêu nhạy của bộ kít.

ii.

Vì bộ kít hoạt động thông qua sự đo đạc trực tiếp, liên tục của điện
trở, cho phép các phân tích được phát hiện nhanh (trong khoảng
vài giây đến phút) - tính siêu nhanh của bộ kít sợi nano.

iii.

Vì các cặp mồi sinh học được thiết kế để sử dụng có tính kết cặp
siêu chọn lọc, cho phép cảm biến có độ chọn lọc rất cao với chất
cần phát hiện - tính chọn lọc đặc trưng rất cao của cảm biến.
Tính kết cặp siêu chọn lọc của các cặp mồi sinh học là một tính
chất đặc thù, nhưng tuyệt vời của tự nhiên, cho phép phân biệt
từng cá thể riêng biệt trong một quần thể cực phức tạp, phong phú.
Ví dụ trong khi trái đất có trên 6 tỉ người với từng ấy phân tử
DNA khác biệt, nhưng một phân tử DNA sẽ chỉ kết cặp duy nhất
với một DNA khác được thiết kế tương thích. Hoặc nếu receptor
là một kháng nguyên đã được thiết kế sẵn, thì kháng nguyên này
chỉ bắt cặp với một kháng thể duy nhất với kháng ngun đó.


iv.

Một bộ kít sinh học có thể được chế tạo bao gồm nhiều sợi nano,
mà mỗi sợi được gắn kết với một mồi sinh học đặc trưng, cho
phép phát hiện đồng thời, cùng lúc nhiều loại phân tử sinh học
khác nhau. Khả năng này nâng cao tính chính xác của phép phân
tích - tính đồng bộ và đa dạng của bộ kít sợi nano.

5

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

Hình 3: Sử dụng bộ kít sợi nano để phát hiện nhanh, siêu nhạy biomarker loại
PSA trong máu người để chẩn đoán ung thư tiền liệt tuyến. Sự bám dính của
PSA lên bề mặt sợi nano bán dẫn loại P(NW1) làm tăng dòng điện chạy qua
sợi, trong khi dòng qua sợi nano bán dẫn loại N(NW2) lại giảm đi. Sự kết hợp
của hai sợi trên cùng một bộ kít như thế nâng cao đáng kể độ chính xác của
phép phân tích.
Trong thời gian qua các nhà khoa học đã dùng nhiều công nghệ chế tạo
khác nhau, chế tạo thành cơng bộ kít nano dựa trên các cấu trúc sợi nano silic.
Ví dụ thiết bị của nhóm nghiên cứu thuộc đại học Harvard, Mỹ, có khả năng
phát hiện nhanh (trong vài giây) và siêu nhạy (ở nồng độ fM) một số phân tử
sinh học như protein (ứng dụng phát hiện ung thư, virut) và DNA ngoại lai
(phát hiện bệnh Cystic fibrosis, một bệnh về sai hỏng gen trong trẻ sơ sinh).
Hình 3 trình bày kết quả phát hiện biomarkers loại PSA để chẩn đoán ung thư
tiền liệt tuyến. Trong ví dụ này, nồng độ PSA được phát hiện ở nồng độ nhỏ
nhất là 0.9 ng/ml, tức là nhạy hơn các phương pháp truyền thống hàng nghìn

lần. Hơn nữa PSA được đo trực tiếp từ máu của bệnh nhân, không cần qua
bước chuẩn bị mẫu, như thế rút ngắn đáng kể thời gian phân tích.
Với nhiều ưu việt như khả năng phát hiện nhanh, siêu nhạy các chỉ thị ung
thư và các chất sinh học quan trọng khác như DNA, proteins, virut… bộ kít sợi
nano đã và đang được các nhóm nghiên cứu và cơng ty đa quốc gia đầu tư,
nghiên cứu, để thương mại hóa trong một vài năm tới [ref]. Do đó mục tiêu của
luận văn Thạc sỹ này là: “Nghiên cứu, chế tạo và ứng dụng của cảm biến
sinh học dựa trên cấu trúc nano silicon”. Công việc được thực hiện tại PTN
CNNN, ĐHQG Tp.HCM.

6

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

CHƯƠNG 2
QUI TRÌNH DEA VÀ CÁC KĨ THUẬT DÙNG
ĐỂ CHẾ TẠO SỢI NANO SILICON
I. Qui trình Deposition and Etching under Angle (DEA) để chế tạo sợi
nano silicon
Với rất nhiều tính chất ưu việt như tính dẫn điện, tính chất quang, và tính
siêu nhạy khi sử dụng làm cảm biến mà thiết bị và linh kiện truyền thống
khơng có được, linh kiện và cảm biến xây dựng trên cấu trúc sợi nano đã và
đang được quan tâm nghiên cứu tại các Phịng Thí Nghiệm và các đơn vị
nghiên cứu hàng đầu trên thế giới (Lieber group tại Đại học Harvard;
Health group tại Đại học Caltech ;
Yang group tại Đại học California;
Viện Công Nghệ Nano

MESA+, Hà lan; Viện nghiên cứu A-star
Singapore; v.v… Các kết quả nghiên cứu về sợi nano
nói chung và cảm biến sợi nano nói riêng đã và đang được cơng bố trên hơn
5000 nghìn bài báo, tại các tạp chí khoa học uy tín lớn nhất trên thế giới như
Science và Nature. Vì những lí do trên, có thể nói rằng đến ngày hơm nay, các
nhóm nghiên cứu đã phát minh, sáng tạo ra rất nhiều phương pháp để chế tạo
sợi nano kim loại và bán dẫn, với kích thước và tính chất đa dạng, phù hợp cho
các mục đích nghiên cứu và ứng dụng khác nhau ( Hình 2).
Tuy các nhóm nghiên cứu đã gần như làm chủ được công nghệ chế tạo sợi
nano, nhưng việc chế tạo được linh kiện nano (hình 2d) với các đường dẫn kết
nối ra mạch điều khiển bên ngồi vẫn cịn là một vấn đề vơ cùng khó khăn. Để
đi đến linh kiện như hình 2d, các nhà khoa học phải thực hiện rất nhiều bước
thực nghiệm như chọn lọc đơn sợi, rồi chế tạo điện cực cho đơn sợi đó. Các
cơng việc này là rất khó khăn và địi hỏi nhiều thời gian vì cấu trúc siêu nhỏ
của sợi. Việc này cần đến các thiết bị chuyên dụng, đắt tiền. Ngoài ra, độ lặp
lại của linh kiện cũng không cao do việc chế tạo thủ công, đơn chiếc. Việc sử
dụng các thiết bị quang khắc nano chuyên dụng nhu E-Beam nanolithography,
Focused Ion Beam, AFM để chế tạo các đơn sợi ở các vị trí định sẵn sẽ loại bỏ
được việc chọn lọc sợi và dễ dàng hơn trong việc tạo điện cực kết nối mạch
7

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

ngoài. Tuy thế các thiết bị quang khắc nano nói trên đều rất đắt tiền, đi kèm với
năng suất thấp, dẫn đến giá thành chế tạo linh kiện quá cao, hạn chế khả năng
nghiên cứu cũng như ứng dụng rộng rãi của linh kiện sợi nano nói chung và
cảm biến sợi nano nói riêng. Hiện nay các nhóm nghiên cứu trên thế giới đang

tập trung nghiên cứu, tìm kiếm các phương pháp chế tạo mới, cho phép chế tạo
đồng loạt, nhằm hạ giá thành, tiến tới việc thương mại hóa rộng rãi linh kiện
loại này trong vịng 3-5 năm tới. Khi đó, với nhiều ưu việt vượt trội, linh kiện
và thiết bị dựa trên cấu trúc sợi nano được kì vọng sẽ góp phần thay đổi bản
chất nhiều nghiên cứu và ứng dụng truyền thống trong nhiều lĩnh vực, từ
quang học, đến điện học, y tế …
Với những lí do nêu trên, việc nghiên cứu để đưa ra cơng nghệ chế tạo
được các sợi nano, và sau đó là linh kiện nano, trong điều kiện còn hạn chế
nhiều về cơ sở vật chất, kiến thức chuyên ngành của Việt nam là một nhiệm vụ
tuy khó khăn, nhưng cấp thiết và mang nhiều ý nghĩa và ích lợi quan trọng.
Để giải quyết được nhiệm vụ này, nhóm tác giả đã chọn các phương pháp
nghiên cứu sau:
• Nghiên cứu, phân tích các tài liệu, bài báo chuyên ngành (> 100 bài báo,
tạp chí), về chế tạo nano nói chung và chế tạo sợi nano nói riêng. Từ mỗi
bài báo, tìm cách học hỏi các điểm mạnh, cũng như chỉ ra các điểm hạn
chế của mỗi phương pháp chế tạo, đúc rút ra phương pháp khả thi để chế
tạo sợi nano Silicon.
• Trao đổi kiến thức với các chuyên gia hàng đầu trong lĩnh vực chế tạo
nano và sợi nano (MINATEC của Pháp, Nanosens của Hà lan, Nhóm
nghiên cứu Biosensors ĐH Tổng hợp Twente, Hà lan …).
• Tìm hiểu khả năng chế tạo của các thiết bị và cơ sở vật chất hiện có của
PTN CNNN, ĐHQG TP.HCM.
Từ các thơng tin và phân tích nói trên, nhóm tác đã đưa ra một qui trình
chế tạo mới, phù hợp với điều kiện cơ sở của PTN Công Nghệ Nano, ĐHQG
TP.HCM, để

8

TIEU LUAN MOI download :



Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

SiO2

Si

Si3N4

SiO2

Đế Si
B Quang khắc, ăn mòn Si3N4

A Lắng
Si3N4

đọng

SiO2/
Ăn mịn tạo nên 1 kênh

lW=3 µm

B Nhìn từ trên

C Ăn mịn ướt SiO2

lắng đọng theo góc nghiên


45o

-45o

E Ăn mịn lớp mạ bằng chùm
ion (Ion Beam Etching)

D Lắng đọng tạo lớp mạ Crom

9

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

Mặt nạ

Mặt nạ sợi nano Cr

F Nhìn từ trên

F Tách lớp Si3N4

Vùng gắn điện cực

G Tách lớp SiO2

G Nhìn từ trên
điện cực


Si- NW

Sợi Si-NW
G Nhìn từ trên

H Ăn mịn lớp Si

Hình 4: Sơ đồ khối các bước cơng nghệ cơ bản của qui trình DEA, phần lớn
chỉ sử dụng các kĩ thuật cơ bản của công nghệ micro mà PTN CNNN hiện có,
để chế tạo sợi nano Silicon trên đế silicon. Chíp chế tạo ra có các đơn sợi nano
silicon, mỗi đơn sợi đều có điện cực nối ra mạch điều khiển mạch ngồi, thích
hợp cho việc đo đạc, khảo sát và ứng dụng làm cảm biến đinh lượng sinh học
sau này.
chế tạo được linh kiện sợi nano silicon (Si), có kích thước và tính chất phù cho
10

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

việc sử dụng làm cảm biến sinh học tiếp theo (Hình 4).
Qui trình cơng nghệ để chế tạo sợi nano nói trên gồm các bước cơ bản sau:
 Chế tạo lớp cách điện SiO2 trên đế silicon loại đặc biệt SOI
(semiconductor on insulator - SoiTec), với lớp silicon trên cùng có độ dày
30 nm, hạt dẫn loại P với nồng độ hạt tải 5. 10

18


hạt tải /cm3, lớp cách

điện SiO2 có độ dày 150 nm, đế silic có độ dày 500-700 micron
 Quang khắc để tạo cửa sổ ăn mịn
 Ăn mịn khơ để tạo bậc nano trên lớp SiO2
 Bốc bay tạo màng Cr trên bậc nano SiO2
 Ăn mịn dưới góc nghiêng để loại bớt màng Cr, tuy thế do cấu trúc ăn
mòn, một phần màng Cr được che chắn bởi bậc nano SiO2, tạo lên sợi
nano Cr nằm dọc theo bậc SiO2. (Bước này được thực hiện trên thiết bị
Ion Beam Etching (IBE) của Viện nghiên cứu MESA+, Hà lan, do PTN
CNNN hiện chưa có thiết bị IBE.
 Ăn mòn thẳng đứng Silicon, dùng Cr làm lớp bảo vệ, để có được các sợi
nano silic nằm bên dưới sợi nano Cr.
 Ăn mòn ướt với độ chọn lọc cao, loại bỏ lớp Cr, để có được các sợi nano
silic.
 Bốc bay đường dẫn (Pt/Ni) cho các sợi nano silicon.
 Ủ nhiệt để tạo tiếp xúc Ohmic cho sợi silicon (Ni dùng làm vật liệu bám
dính và giúp tạo tiếp xúc Ohmic.
 Bốc bay tạo lớp cách điện cho điện cực Pt/Ni (vì trong khi đo đạc trong
dung dịch, chỉ sợi Silic là được tiếp xúc với dung dịch đo, trong khi các
điện cực cần được cách điện hồn tồn với dung dịch để tranh dịng điện
rị giữa hai điện cực kim loại.
Kĩ thuật và thơng số chi tiết của các bước công nghệ cơ bản trên sẽ được
nghiên cứu, khảo sát và trình bày chi tiết trong chương 3.
11

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon


Qui trình này chỉ sử dụng các kĩ thuật cơ bản là: bốc bay và ăn mịn dưới
góc nghiêng- Deposition and Etching under Angle (DEA) để chế tạo ra các
sợi nano có kích thước nhỏ, ở qui mơ wafer. Hơn nữa vì các kĩ thuật sử dụng là
các kĩ thuật của cơng nghệ micro, do đó qui trình chế tạo không quá đắt tiền,
phù hợp với điều kiện trong nước. Qui trình cơng nghệ để chế tạo được trình
bày trong Hình 4 được gọi vắn tắt là Qui trình DEA (depostion and etching
under angles) trong luận văn này.
Trong phần tiếp theo, một số kĩ thuật cơ bản của qui trình DEA sẽ được
trình bày vắn tắt để cung cấp các thông tin cơ bản của các kĩ thuật chế tạo được
sử dụng trong luận văn này.
II.

Các kĩ thuật cơ bản sử dụng trong qui trình DEA
II.1. Cơng nghệ quang khắc

Trong qui trình cơng nghệ chế tạo sợi nano silicon, quang khắc được thực
hiện để truyền hình ảnh cửa sổ từ mặt nạ (mask) lên lớp mỏng vật liệu nhạy
bức xạ, gọi là chất cảm quang, phủ trên mặt phiến silicon. Những hình ảnh này
xác định các vùng cửa sổ định hình trên đế silic mà sau này các sợi nano
silicon sẽ được tạo ra theo chiều dọc của các cửa sổ. Hình ảnh trên vật liệu cảm
quang khơng phải là phần tử cố định cửa sổ định hình, mà chỉ là bản sao hình
dạng cấu trúc mà ta muốn chuyển vào lớp SiO2 sau này.
Để nhận được hình dạng thật của cấu trúc, những hình ảnh trên lớp cảm
quang phải được truyền tiếp xuống lớp vật liệu bên dưới SiO2. Việc này được
thực hiện qua công đoạn ăn mịn khơ (dry etching), sử dụng hỗn hợp khí CHF3
+ O2. Trong qui trình cơng nghệ này, lớp cảm quang có chức năng chính là
định hình cho bậc nano trên màng mỏng SiO2, do đó chất lượng của lớp cảm
quang sẽ góp phần quyết định đến chất lượng định hình của bậc nano, mà cuối
cùng là của sợi nano sau này. Điều này yêu cầu tiến hành thực nghiệm, thay

đổi các thơng số của q trình quang khắc là thời gian chiếu sáng và thời gian
hiện để tạo ra các cửa sổ có chất lượng tốt nhất với loại cảm quang sử dụng.

12

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

Cr

Hình 5: Mơ hình mặt nạ

Hình 6: Quy trình quang khắc

Các giai đoạn cơ bản để tạo quang khắc:
- Chuẩn bị bề mặt
- Sấy sơ bộ
- Phủ photoresist lên đế
13

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

- Chuyển hình ảnh từ mặt nạ lên photoresist
- Rửa, tạo hình ảnh lên photoresist
- Ăn mịn lớp oxit bên dưới photoresist và tách lớp photoresist

Quang khắc được sử dụng rộng rãi nhất trong công nghiệp bán dẫn để chế
tạo các vi mạch điện tử. Ngoài ra, quang khắc được sử dụng trong ngành khoa
học và công nghệ vật liệu để chế tạo các chi tiết vật liệu nhỏ, chế tạo các linh
kiện vi cơ điện tử. Hạn chế của quang khắc là do ánh sáng bị nhiễu xạ nên
khơng thể hội tụ chùm sáng xuống kích cỡ q nhỏ, vì thế nên khơng thể chế
tạo các chi tiết có kích thước nano (độ phân giải của thiết bị quang khắc tốt
nhất là 50 nm), do đó khi chế tạo các chi tiết nhỏ cấp nanomet, người ta phải
thay bằng công nghệ quang khắc chùm điện tử (electron beam lithography).
Trong luận văn này, thiết bị quang khắc quang học được sử dụng với mục đích
để tạo các cấu trúc có kích thước micron (bước B hình 4), và do đó đạt u cầu
đề ra.
QUI TRÌNH QUANG KHẮC
Chuẩn bị bề mặt:
- Thổi khí nitơ có áp suất cao
- Tẩy các tạp hữu cơ và vơ cơ bằng hóa chất
-

Rửa trong nước DI

-

Ủ nhiệt ở khoảng 150~200oC, 5-10 phút để loại hơi nước
- Phủ lớp primer
Mục đích: làm tăng khả năng kết dính giữa wafer và photoresist.
Primer thường sử dụng là HMDS (hexamethyldislazane)

Phủ photoresist:
Ở giai đoạn này nền được quay trong máy spinner, các thơng số chính để
điều chỉnh lớp photoresist trong giai đoạn này:
- Tốc độ 3000-6000 vòng/phút

- Thời gian quay: 15-30 giây
14

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

- Độ dày lớp phủ: 0.5-15µm
Cơng thức thực nghiệm để tính độ dày lớp phủ photoresist
t=

kp 2
w

Trong đó k: hằng số của thiết bị quay spinner (80-100)
p: hàm lượng chất rắn trong resist (%)
w: tốc độ quay của spinner (vịng/1000)

Hình 7: Cách phủ lớp photoresist
Sấy sơ bộ Pre-Baking (Soft-Baking): làm bay hơi dung mơi có trong
photoresist. Trong q trình sấy độ dày lớp phủ sẽ giảm khoảng 25%.
Các phương pháp thực hiện:
a. Dùng lò đối lưu nhiệt
- nhiệt độ: 90-100oC
- thời gian: 20 phút
b. Dùng tấm gia nhiệt
- nhiệt độ: 75-85oC
- thời gian: 45 giây
c. Dùng sóng viba và đèn hồng ngoại.

Chiếu (exposure): Trong giai đoạn này, hệ sẽ được chiếu ánh sáng để chuyển
hình ảnh lên nền, mặt nạ được đặt giữa hệ thấu kính và nền.
15

TIEU LUAN MOI download :


Nghiên cứu, chế tạo, ứng dụng cảm biến sinh học sợi nano silicon

Có 3 phương pháp chiếu dựa vào vị trí đặt mặt nạ:
- mặt nạ tiếp xúc (là cách sử dụng trong luận văn này)
- mặt nạ đặt cách photoresist khoảng cách nhỏ
- mặt nạ đặt cách xa photoresist, ánh sáng được chiếu qua hệ thấu kính.
Hình ảnh thu nhỏ 1:4 đến 1:10.

Hình 8: Các phương pháp chiếu
Tráng rửa (developing): Dùng hóa chất tách các photoresist chưa đóng rắn, để
tạo nên cấu trúc.
a. Đối với photoresist âm:
- chất rửa: xylen
- chất súc lại: n-butylacetate
b. Đối với photoresist dương:
- chất rửa: (NaOH, KOH), nonionic soln (TMAH)
- Thơng số kiểm sốt trong quá trình rửa: nhiệt độ rửa, thời gian rửa,
phương pháp rửa, chất rửa.
Sấy khô Post-Baking (Hard-Baking): làm cho lớp photoresist cứng hồn tồn,
đồng thời tách tồn bộ dung mơi ra khỏi resist.
Điều kiện sấy:
16


TIEU LUAN MOI download :


×