Tải bản đầy đủ (.pdf) (111 trang)

Giáo trình Kỹ thuật xung số (Nghề Điện công nghiệp, Điện dân dụng Cao đẳng)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.09 MB, 111 trang )

BỘ XÂY DỰNG
TRƯỜNG CAO ĐẲNG NGHỀ XÂY DỰNG

GIÁO TRÌNH
MƠ ĐUN: KỸ THUẬT XUNG – SỐ
NGHỀ: ĐIỆN CÔNG NGHIỆP, ĐIỆN DÂN DỤNG
TRÌNH ĐỘ: CAO ĐẲNG
/QĐ-TCGNB ngày…….tháng….năm

Ban hành kèm theo Quyếtđịnh số:

2021 của Trường cao đẳng nghề Xây dựng

Tháng

, năm 2021

0


TUYÊN BỐ BẢN QUYỀN
Tài liệu này thuộc loại sách giáo trình nên các nguồn thơng tin có thể được phép
dùng nguyên bản hoặc trích dùng cho các mục đích về đào tạo và tham khảo.
Mọi mục đích khác mang tính lệch lạc hoặc sử dụng với mục đích kinh doanh thiếu
lành mạnh sẽ bị nghiêm cấm.

1


LỜI GIỚI THIỆU
Mô đun Kỹ thuật xung - số là mô đun chuyên môn quan trọng không những cho


sinh viên các ngành Điện Công Nghiệp và Điện Dân Dụng mà cịn được dùng cho sinh
viên các ngành Cơ khí chế tạo, Cơ khí động lực, Cơng nghệ thơng tin… và cịn dành
cho học sinh thuộc các bậc cơng nhân kỹ thuật, Trung cấp kỹ thuật. Môn học này cần
phải được học sau các môn Lý thuyết mạch (kỹ thuật điện), Vật liệu điện, Điện tử cơ
bản. Đồng thời, cần được giảng dạy trước các môn Kỹ thuật vi xử lý, PLC và các mơn
chun mơnkhác.
Tồn bộ nội dung mơ đun được giảng dạy trong 88 giờ, nhằm cung cấp cho sinh
viên những lý thuyết cơ bản nhất về kỹ thuật xung và kỹ thuật số, hướng dẫn sinh viên
thực hành thiết kế, lắp ráp một số mạch cơ bản. Trên cơ sở đó giúp người học có khả
năng học tốt các mơn chun mơn kế tiếp và tiến tới có khả năng thiết kế hệ thống. Bao
gồm 7 bài:
Bài 1: Mạch dao động đa hài
Bài 2: Mạch hạn chế biên độ và ghim áp
Bài 3: Các quan hệ logic cơ bản và thông dụng
Bài 4: Flip - Flop
Bài 5: Bộ dồn kênh (MUX) và phân kênh (DEMUX)
Bài 6: Mạch đếm và thanh ghi dịch
Bài 7: Biến đổi D/A và A/D
Trong q trình biện soạn giáo trình này với sự đóng góp những ý kiến q báu từ các
thầy cơ trong khoa Điện- Điện tử và các thầy, cô đồng nghiệp tôi đã cố gắng để đưa những phần
kiến thức phù hợp và kỹ năng cần thiết cho người học. Tuy nhiên khơng tránh khỏi những thiếu
xót. Rất mong sự đóng góp ý kiến từ các thầy cơ để giáo trình được hoàn thiện hơn
Quảng Ninh , ngày……tháng……năm………
Tham gia biên soạn
Chủ biên: Vũ Thị Thơ

2


MỤC LỤC

Nội dung

Trang

Tuyên bố bản quyền ……………………………………………………………………………..……..

1

Lời giới thiệu……………………………………………………………………………………………..

2

Giáo trình môn học Mô đun: Kỹ thuật xung – số ……………….……………………………….

5

Bài 1. Mạch dao động đa hài……………………………………..…………………………………..

6

2.1. Mạch dao động đa hài lưỡng ổn ……………………………………….………………………

7

2.1.1. Mạch dao động đa hài dùng lưỡng ổn Transistor ………………………….……………

7

2.1.2. Mạch dao động đa hài dùng đơn ổn IC 555 ………………………….…………………..


8

2.1.3. Mạch dao động đa hài dùng lưỡng ổn cổng logic ………………………………..……..

10

2.2. Mạch dao động đa hài dùng đơn ổn …………………………………………………………..

10

2.2.1. Mạch dao động đa hài dùng đơn ổn Tranzistor ……………………………..…………..

11

2.2.2. Mạch dao động đa hài dùng đơn ổn IC 555 ………………………………..……………

12

2.2.3. Mạch dao động đa hài dùng đơn ổn cổng logic ………………………………..……….

13

2.3. Mạch schmitt – trigger ………………………………………………………………..………..

15

2.3.1. Mạch schmitt – trigger dùng tranzistor …………………………………………….…….

15


2.3.2. Mạch schmitt – trigger cổng logic ………………………………………………..……….

18

Bài 2. Mạch hạn chế biên độ và ghim áp ………………………………………..………………

22

2.1. Mạch hạn chế biên độ …………………………………………………………………………..

23

2.1.1. Mạch hạn chế biên độ dùng Điốt ……………………………………………..……………

23

2.1.2. Mạch hạn chế biên độ dùng Tranzistor ……………………………….…………………

28

2.2. Mạch ghim áp ……………………………………………………………………..…………….

32

2.2.1. Mạch ghim áp dùng đi ốt ………………………………………………………………..….

32

2.2.2. Mạch ghim áp dùng Tranzistor ………………………………………………..…………..


38

Bài 3. Các quan hệ logic cơ bản và thông dụng …………………………………………………

40

2.1. Các khái niệm cơ bản …………………………………………………………………………..

41

2.2. Hệ thống số và mã số …………………………………………………………………………..

43

2.2.1. Hệ thống đếm thập phân …………………………………………………………………….

43

2.2.2. Hệ thống số nhị phân ………………………………………………………………………..

44

2.2.3. Hệ thống só lục phân ………………………………………………………………………..

45

2.2.4. Hệ thống số bát phân …………………………………………………………………………

46


2.3. Các cổng logic cơ bản ………………………………………………………………………….

47

3


2.3.1. Cổng AND ……………………………………………………………………………………..

48

2.3.2. Cổng OR ………………………………………………………………………………………..

49

2.3.3. Cổng NOT ……………………………………………………………………………………..

49

2.3.4. Cổng NAND …………………………………………………………………………………..

50

2.3.5. Cổng EX – OR ………………………………………………………………………………..

51

2.3.6. Cổng EX – NOR ……………………………………………………………………………..

52


2.4. Các biến đổi logic ………………………………………………………………………………

52

Bài 4. FLIP - FLOP …………………………………………………………………………………..

57

2.1. Flip – Flop S-R …………………………………………………………………………………..

58

2.2. Flip – Flop J – K …………………………………………………………………………………

61

2.3. Flip – Flop T ……………………………………………………………………………………..

64

2.4. Flip – Flop D …………………………………………………………………………………….

65

Bài 5. Bộ dồn kênh (MUX) và phân kênh (DEMUX) …………………………………………

67

2.1. Bộ dồn kênh (MUX) ……………………………………………………………………………


68

2.1.1. Nguyên tắc dồn kênh …………………………………………………………………………

68

2.1.2. Thực hiện hàm logic bằng bộ dồn kênh …………………………………………………

68

2.1.3. Bộ dồn kênh họ TTL …………………………………………………………………………

69

2.2. Bộ phân kênh (DEMUX) ………………………………………………………………………

71

2.2.1. Nguyên tắc phân kênh ……………………………………………………………………….

71

2.2.2. Thực hiện hàm logic bằng bộ phân kênh ……………………………………………….

73

2.2.3. Bộ phân kênh họ TTL ………………………………………………………………………

75


Bài 6. Mạch đếm và thanh ghi dịch ……………………………………………………………..

79

2.1. Mạch đếm ……………………………………………………………………………………….

80

2.2. Thanh ghi dịch …………………………………………………………………………………

90

Bài 7. Biến đổi D/A và A/D ……………………………………………………………………….

102

2.1. Mạch chuyển đổi số - tương tự ………………………………………………………………

103

2.2. Mạch chuyển đổi tương tự - số ………………………………………………………………

106

Tài liệu tham khảo ……………………………………………………………………………………

110

4



GIÁO TRÌNH MƠN HỌC/MƠ ĐUN
Tên mơ đun: Kỹ thuật xung - số
Mã số mô đun: MĐ 23
Thời gian mô đun: 88 giờ; (Lý thuyết 20 giờ; thực hành, bài tập: 62 giờ; Kiểm
tra: 6 giờ)
I. Vị trí, tính chất của mơ đun:
- Vị trí: Mơ đun được bố trí học song song với các mô đun: Điện tử công
suất, Chuyên đề điều khiển lập trình cỡ nhỏ...
- Tính chất: Là mô đun chuyên môn của nghề.
II. Mục tiêu mô đun:
- Kiến thức:
+ Trình bày được sơ đồ nguyên lý, nguyên lí làm việc, linh kiên điện tử, tiêu
chuẩn kỹ thuật, trình tự các bước lắp ráp mạch theo sơ đồ cho trước.
+ Phân tích được sơ đồ lắp ráp và dạng tín hiệu đầu ra của các mạch tạo
xung.
+ Khảo sát và nhận biết được các mạch logíc cơ bản.
+ Trình bày đƣợc cấu trúc, bảng chân lí của các mạch logic.
- Kỹ năng:
+ Đo, khảo sát được dạng tín hiệu đầu ra của các mạch tạo xung theo yêu
cầu.
+ Biết cách biến đổi các cổng logic cơ bản.
+ Lắp ráp được một số mạch ứng dụng cơ bản đạt yêu cầu kỹ thuật.
- Năng lực tự chủ và trác nhiệm:
+ Có ý thức trong học tập và trong quá trình luyện tập.
+ Có tinh thần trách nhiệm trong q trình thực hành và cách bảo quản đồ
nghề
Nội dung mơ đun:


5


Bài 1: Mạch dao động đa hài
1. Mục tiêu của bài:
- Kiến thức:
+ Trình bày được sơ đồ nguyên lý, nguyên lí làm việc, linh kiên điện tử, tiêu
chuẩn kỹ thuật, trình tự các bước lắp ráp mạch theo sơ đồ cho trước.
+ Phân tích được sơ đồ lắp ráp và dạng tín hiệu đầu ra.
- Kỹ năng:
+ Thực hiện đƣợc các bước lắp ráp mạch đúng trình tự và yêu cầu kỹ thuật.
+ Lắp ráp được các mạch đúng trình tự đảm bảo yêu cầu kỹ thuật.
+ Đo, khảo sát đƣợc dạng tín hiệu đầu ra theo yêu cầu.
- Năng lực tự chủ và trách nhiệm:
+ Ý thức nghiêm túc trong học tập.
+ Rèn luyện tác phong công nghiệp và an toàn trong học tập, lao động.
Dụng cụ và vật tư:
a. Dụng cụ
Cho 1 nhóm (3 sinh viên):
STT

Dụng cụ

Đơn vị

Số lượng

1

Đồng hồ V.OM


Cái

1

2

Tesboard

Cái

3

3

Kiềm cắt

Cái

1

4

Nhíp

Cái

1

5


Dây cắm testboard

Cái

3

6

Mỏ hàn

Cái

1

7

Chì hàn

Cuộn

1

Ghi chú

b. Vật tư
STT

Vật tư


Đơn vị

Số lượng

1

Điode ; 1 C

Cái

4

2

Tụ điện các loại

Cái

4

3

IC 7805 ; IC 555

Cái

4

6


Ghi chú


4

Điện trở R (4K7/1K)

Cái

6

5

IC 7414

Cái

03

6

Bóng LED

Cái

10

2. Nội dung bài
2.1. Mạch dao động đa hào lưỡng ổn …
2.1.1. Mạch đa hài lưỡng ổn dùng Transistor

Mạch dao động lưỡng ổn hay còn gọi là mạch dao động hai trạng thái bền.
Trong đó,mạch được thiết kế sao cho Q1 và Q 2 làm việc ở vùng dẫn bão hòa.
* Nguyên lý hoạt động:
Giả sử ban đầu Q1 dẫn, Q2 tắt, mạch ở hình 1.21a trở thành như hình 1.21b.
Lúc này, dịng

I B1 

VCC  VBE1
RC 2  R2

tại cực B của transistor Q 1 làm transistor Q 1 tiếp tục dẫn. Đồng thời, dòng
IB2 =0 tại cực B của transistor Q2 làm transistor Q 2 tiếp tục tắt. Do đó, nếu khơng có
tác động bên ngồi thì Q 1 vẫn dẫn, Q2 vẫn tắt. Vì vậy, trạng thái Q1 dẫn, Q2 tắt là
trạng thái ổn định của mạch.
Để thay đổi trạng thái ta cấp một xung âm vào Vi, làm V BE1 <0  Q1
ngưng dẫn làm điện thế tại VO1 lớn  VBE2 đủ lớn  Q2 dẫn, trở thành như hình
1.24c.

Hình 1.1
Lúc đó, dịng I B 2 

VCC  VBE2
tại cực B của transistor Q2 làm transistor Q2 tiếp
RC1  R1

tục dẫn. Đồng thời, dòng IB1 = 0 tại cực B của transistor Q1 tiếp tục tắt. Do đó, nếu khơng
7



có tác động bên ngồi thì Q2 vẫn dẫn, Q1 tắt là trạng thái ổn định của mạch.
Để thay đổi trạng thái ta cấp một xung dương vào Vi, làm V BE1 đủ lớn  Q1
dẫn làm điện thế tại V01  0V  VBE2  0V  Q2 ngưng dẫn. Từ ngun lý hoạt động
ở trên, mạch ở hình...,có 2 trạng thái ổn định. Vì vậy, mạch được gọi là mạch dao
động lưỡng ổn.
Dạng điện áp vào, ra của mạch lưỡng ổn (hình 1.25)

Hình 1.2
2.1.2. Mạch đa hài lưỡng ổn dùng IC 555
* Sơ đồ mạch (hình 1.3)
IC 555 được thiết kế đơn giản bao gồm bộ so sánh điện áp, flip – flop và transistor
để xả điện. Tuy cấu tạo đơn giản nhưng nó là linh kiện quan trọng và được sử dụng rộng
rãi trong kĩ thuật điện tử.
Ba điện trở được nối nối tiếp với nhau và nối với đầu vào nguồn VCC, bộ nguồn
VCC chia điện áp cho ba điện trở này. 1/3 điện áp VCC được chân dương của con opamp
thứ nhất (COMP1) và 2/3 điện áp VCC được đưa vào chân âm của con opamp thứ hai
(COMP2). Khi điện áp vào chân Trigger (chân 2 của IC 555) nhỏ hơn 1/3 điện áp VCC,
chân S của flip – flop chuyển sang mức cao và flip – flop set. Khi điện áp chân
THRESHOLD (chân 6 của IC 555) lớn hơn 2/3 VCC thì chân R được tích cực và được
reset.

8


Hình 1.3. Sơ đồ mạch IC 555
* Giải thích hoạt động (hình 1.3)
Giả sử khi được cung cấp điện áp VCC, ngõ ra Q của flip – flop là tích cực (H) còn
ngõ ra /Q ở mức thấp (L). Do đó, transistor tắt, dịng điện từ VCC qua Ra và Rb đến tụ
điện C. Tụ C nạp điện. Điện áp tại điểm X ban đầu là 0V. Vì điện áp VX < V1 (của
COMP1) nên chân S của Flip – flop trở thành tích cực (H) → ngõ ra Q cũng tích cực

(H)→ /Qở mức thấp (L). Mặt khác, vì VX < V2 (COMP2), đầu ra COMP2 mức thấp (L),
flip – flop hoạt động ổn định ở chế độ này.

Hình 1.4. Hoạt động của các chân IC 555
Điện áp VX giảm khi tụ xả, khi VX ≤ V1,đầu ra của COMP1 trở thành tích cực (H)
→ chân S của flip – flop cũng tích cực. Ngõ ra Q của FF là mức cao, ngược lại Q là mức
thấp. Do đó, transistor tắt, tụ ngừng xả, dòng điện chạy qua tụ, tụ lại nạp, điện áp VX
tăng dần. Quá trình được lặp lại như lúc đầu. Khi tụ điện nạp, nó nạp qua 2 điện trở Ra
và Rb, còn khi xả, tụ chỉ xả qua Rb. Như vậy thời gian nạp và thời gian xả là khác nhau,
9


tín hiệu dao động khơng đều. Để làm giảm sự khác nhau đó, thơng thường ta chọn Rb
>> Ra (Ra ≠ 0)..
2.1.3. Mạch dao động đa hài lưỡng ổn cổng logic
Mạch tạo xung đa hài lưỡng ổn cổng logic có nhiều ứng dụng tạo ra bộ set-reset,
mạch lật SR để sử dụng trong các mạch đếm hoặc như một thiết bị lưu trữ bộ nhớ một
bit trong máy tính. Các ứng dụng khác của flip-flops bao gồm bộ phân tần vì các xung
đầu ra có tần số bằng một nửa (ƒ/2) tần số của xung đầu vào kích hoạt do chúng thay
đổi trạng thái từ một xung đầu vào duy nhất. Nói cách khác, mạch tạo ra phân chia tần
số vì bây giờ nó chia tần số đầu vào cho hệ số hai .
TTL/CMOS mạch atoh xung đa hài lưỡng ổn:
Chúng ta cũng có thể xây dựng các mạch bằng cách sử dụng các mạch tích hợp
thơng dụng. Mạch sau đây cho thấy cách cấu tạo một mạch đa hài lưỡng ổn chỉ bằng
hai Cổng Logic “NAND” 2 đầu vào.

Hình 1.5. Mạch tạo xung đa hài lưỡng ổn NAND
Đoạn mạch trên cho chúng ta thấy cách chúng ta có thể sử dụng hai cổng NAND
được kết nối với nhau để tạo thành một bộ tạo xung đa hài lưỡng ổn. Loại mạch này cịn
được gọi là “Bistable Flip-flop”. Mạch có thể điều khiển bằng tay được kích hoạt bởi

cơng tắc đơi một cực (SPDT) để tạo ra tín hiệu logic “1” hoặc logic “0” ở đầu ra.
2.2. Mạch dao động đa hài đơn ổn
Khi mạch hoạt động ở chế độ này, nếu không cung cấp điện áp điều khiển từ
bên ngồi thì bộ dao động đa hài nằm ở trạng thái ổn định. Khi có xung điều khiển,
thường là các xung kích thích có độ rộng hẹp, thì nó chuyển sang chế độ không ổn
định trong một khoảng thời gian rồi trở lại trạng thái ban đầu và kết quả ngõ ra cho
10


ra một xung.
Thời gian bộ dao động đa hài nằm ở trạng thái không ổn định dài hay ngắn là
do các tham số của mạch quyết định. Ngõ ra của bộ dao động đa hài đơn ổn có một
trạng thái ổn định (hoặc ở mức cao hoặc mức thấp). Mạch này cịn có tên gọi là đa
hài đợi hay đa hài một trạng thái bền.
Xung kích từ bên ngồi có thể là xung gai nhọn âm hoặc dương, chu kỳ và
biên độ do mạch quyết định.
2.2.1 . Mạch đa hài đơn ổn dùng Transistor
Sơ đồ mạch điện cơ bản hình 1.6

Hình 1.6: Mạch đa hài đơn ổn
Đây là dạng hai mạch ngắt dẫn ghép với nhau. Cực B của T1 ghép DC với cực
thu của T2. Cực B của T2 ghép AC với cực thu của T1 (qua tụ C).
Mạch được thiết kế sao cho ở chế độ T1 tắt và T2 dẫn bão hòa. Nguồn VBB
phân cực nghịch mối nối BE của T1, do đó T 1 tắt khi chưa có tác động bên ngồi.
Cịn T2 dẫn bão hịa nhờ cực B của nó được cấp điện thế dương từ nguồn VCC.
Ta thấy T2 dẫn bảo hịa vì các giá trị R1 và RC2 được chọn để thỏa mãn điều
kiện ß IB > I Cbh
Do vậy ở trạng thái bền thì Vr = V CE2bh = 0
Do ghép trực tiếp với T2 qua R3 nên VB1 = VCE2bh < VBE1
Khi T2 dẫn bão hịa thì tụ C nạp điện qua RC1 và qua mối nối BE2, giá trị gần

đạt đến là v C = VCC - VBE2  VCC (hình 1.7)

11


Hình 1.7
Khi kích một xung dương vào vv cực nền của T1 , làm T1 đổi trạng thái tự tắt
sang dẫn bão hịa. Lúc này thì tụ C phóng điện qua mối nối CE của T1, sự phóng
điện này làm phân cực nghịch mối nối BE của T2, do đó T2 tắt. Dòng cực thu của
T2 là IC2 giảm xuống bằng 0. Tồn bộ dịng qua R C2 sẽ chạy hết vào cực nền của T1
để duy trì trạng thái bão hịa của T1 . Đây là trạng thái khơng bền của mạch.
Thật vậy, ngay sau khi tụ C xả điện xong thì nó được nạp điện lại qua R1 và
CE1 . Với thời hằng là R 1C. Điện thế cực nền của T2 lúc này tăng dần do cực dương
của tụ C đặt vào nó và khi đạt giá trị lớn hơn V  thì T2 bắt đầu dẫn lại. Trong lúc
này, cùng với sự tăng của dòng I C2 (do dòng IB2 tăng dần), điện áp vr giảm xuống
gần bằng không, tức điện thế tại cực nền của T1 bằng không, làm T 1 tắt. Như vậy
mạch đã trở về trạng thái ban đầu với T1 tắt và T2 bão hòa vr = V CE2bh. Trong khoảng
thời gian ngắn, tụ C sẽ nạp trở lại từ nguồn VCC thông qua R1 và mối nối BE của T2
đang dẫn để có điện áp xấp xỉ bằng Vcc . Mạch chờ đợi xung kích mới.
2.2.2. Mạch đa hài đơn ổn dùng IC 555

Hình 1.8
* Dạng sóng tại chân 2, 6 và 3 (hình 1.9)

12


Hình 1.9 Dạng sóng chân 2, 6 và 3

2.2.3. Mạch dao động đa hài đơn ổn dùng cổng logic

TTL/CMOS tạo xung đa hào đơn ổn
Ngoài việc xây dựng bộ tạo xung đa hài bằng Transistor, chúng ta cũng có thể
xây dựng các mạch này bằng cách sử dụng các mạch tích hợp thơng dụn chỉ bằng hai
Cổng Logic “NOR” với 2 đầu vào.
Cổng NOR đơn ổn
Sơ đồ mạch cổng NOR đơn ổn được biểu diễn trên hình 1.10

Hình 1.10. Sơ đồ mạch cổng NOR đơn ổn

Giả sử ban đầu rằng các đầu vào kích hoạt là thấp ở mức logic “0” để đầu ra từ
đầu tiên NOR của U1 là CAO ở mức logic “1”. Điện trở R T được kết nối với điện áp
cung cấp cũng bằng mức logic “1”, có nghĩa là tụ điện CT có cùng điện tích trên cả hai
bản tụ. V1 bằng với điện áp này để đầu ra từ thứ hai NOR U2 sẽ LOW ở mức logic “0”.
Mạch ở “Trạng thái ổn định” với đầu ra bằng khơng.
Khi một xung kích hoạt dương được áp dụng cho đầu vào tại t0 , đầu ra U1 đi
LOW nên tụ điện CT xả . Vì cả hai bản của tụ điện hiện ở mức logic “0”, đầu vào U2

13


cũng thế dẫn đến đầu ra bằng mức logic “1”. Mạch ở Trạng thái không ổn định với điện
áp đầu ra bằng + Vcc.
U2 sẽ duy trì trạng thái khơng ổn định này cho đến khi tụ điện định thời sạc lên
qua điện trở RT đạt đến điện áp ngưỡng đầu vào tối thiểu là U2 (khoảng 2,0V) khiến nó
thay đổi trạng thái như mức logic “1” tại đầu vào. Điều này làm cho đầu ra được đặt lại
về mức logic “0” và lần lượt được đưa trở lại (vòng phản hồi) tới một đầu vào của U2 .
Điều này sẽ tự động đưa monostable trở lại trạng thái ổn định ban đầu và chờ xung kích
hoạt thứ hai để khởi động lại quá trình định thời một lần nữa.
Dạng sóng của cổng NOR được biểu diễn trên hình 1.11


Hình 1.11. Dạng sóng của cổng NOR

Phương trình cho khoảng thời gian của mạch là:
𝜏 = 0,7. 𝑅𝐶

Trong đó: R tính bằng Ω, C tính bằng Farads
Chúng ta cũng có thể tạo ra các bộ tạo xung đa hài đơn ổn bằng cách sử dụng vi
mạch đặc biệt và đã có các mạch tích hợp dành riêng cho việc này như 74LS121 hoặc
74LS123 có thể kích hoạt lại hoặc 4538B có thể tạo ra độ rộng xung đầu ra từ mức thấp
tới 40 nano giây lên đến 28 giây bằng cách chỉ sử dụng hai thành phần định thời RC bên
ngoài với độ rộng xung được cho là: T = 0,69RC tính bằng giây.
Đơn ổn dùng 74LS121:
Sơ đồ mạch đơn ổn dùng IC 74LSW121 được biểu diễn trên hình 1.12.

14


Hình 1.12. Sơ đồ mạch đơn ổn dùng 74LS121

IC tạo xung đơn ổn này có thể được cấu hình để tạo ra xung đầu ra trên xung kích
hoạt cạnh lên hoặc xung kích hoạt cạnh xuống. 74LS121 có thể tạo ra độ rộng xung từ
khoảng 10ns đến độ rộng khoảng 10ms với điện trở định thời tối đa là 40kΩ và tụ định
thời tối đa là 1000uF.
2.3. Mạch Schmitt – trigger
Mạch Schmitt Trigger còn được gọi là mạch so sánh có phản hồi. Mạch được
thiết kế với một phản hồi dương và do đó sẽ tạo ra các chuyển đổi đầu ra. Ngoài ra, việc
sử dụng phản hồi điện áp dương thay vì phản hồi âm sẽ ỗ trợ điện áp phản hồi cho điện
áp đầu vào thay vì chống lại nó. Việc sử dụng mạch này nhằm loại bỏ những khó khăn
trong mạch dị khơng chéo do tín hiệu tần số thấp và điện áp nhiễu đầu vào.
2.3.1. Mạch Schmitt – trigger dùng tranzistor

Mạch Transistor Schmitt Triger chứa hai bóng bán dẫn và năm điện trở. Để giải
thích rõ hơn, chúng ta sẽ gán các giá trị cho các thành phần và sau đó trình bày cách xây
dựng mạch này trên một bảng mạch để xem nguyên lý hoạt động của nó.
Sơ đồ nguyên lý của mạch được biểu diễn trên hình 1.13

15


Hình 1.13. Sơ đồ nguyên lý mạch Schmitt – trigger dùng tranzistor khi Vin = 0V

Giả sử đầu vào Vin là 0 V. Điều đó có nghĩa là bóng bán dẫn T1 bị cắt và không dẫn
điện. Mặt khác Transistor T2 đang dẫn vì chúng ta có điện áp khoảng 1,98 V tại nút
B vì chúng ta có thể coi phần này của mạch như một bộ chia điện áp và tính điện áp
bằng cách sử dụng biểu thức này.

Vì vậy, vì Transistor T2 đang dẫn điện nên điện áp đầu ra sẽ thấp và điện áp tại
cực phát sẽ thấp hơn khoảng 0,7 V so với điện áp ở chân của bóng bán dẫn, hoặc đó là
16


khoảng 1,28 V.

Hình 1.14. Sơ đồ nguyên lý mạch Schmitt – trigger dùng tranzistor khi Vin >1,98V

Cực phát của bóng bán dẫn T1 được kết nối với cực phát của bóng bán dẫn T2 để
chúng ở cùng mức điện áp 1,28 V có nghĩa là bóng bán dẫn T1 sẽ bật khi điện áp Vin
tại cơ sở của nó sẽ cao hơn 0,7 V trên giá trị này của 1,28 V, hoặc khoảng 1,98 V.
Vì vậy, khi chúng ta tăng đầu vào Vin và chúng ta vượt qua giá trị này của 1,98,
bóng bán dẫn T1 sẽ bắt đầu dẫn. Điều này sẽ làm cho điện áp ở chân của bóng bán dẫn
T2 giảm xuống và sẽ cắt bóng bán dẫn. Khi bóng bán dẫn T2 khơng cịn dẫn điện, điện

áp đầu ra sẽ tăng cao.
Tiếp theo, điện áp Vin ở chân của bóng bán dẫn T1 sẽ bắt đầu giảm và nó sẽ tắt
bóng bán dẫn khi điện áp cơ sở sẽ cao hơn 0,7 V so với điện áp cực phát của nó. Điều
này sẽ xảy ra vì dòng điện trong cực phát sẽ giảm xuống mức mà bóng bán dẫn sẽ chuyển
sang chế độ hoạt động thuận. Trong chế độ này, điện áp bộ thu sẽ tăng lên, điều này
cũng làm tăng điện áp ở chân của bóng bán dẫn T2. Điều này sẽ gây ra một lượng nhỏ
dịng điện chạy qua bóng bán dẫn T2, làm giảm điện áp tại các cực phát và sẽ làm cho
bóng bán dẫn T1 tắt. Trong trường hợp của chúng tôi, đầu vào Vin cần giảm xuống
khoảng 1,3 V để tắt bóng bán dẫn T1.
Lặp đi lặp lại nhiều lần. Vì vậy, chúng tơi có hai ngưỡng, ngưỡng cao khoảng 1,9
V và ngưỡng thấp khoảng 1,3 V.

17


Hình 1.15. Đồ thị ngưỡng trên và ngưỡng dưới

2.3.2. Mạch Schmitt – trigger cổng logic
Sơ đồ mạch được biểu diễn trên hình 1.16

Hình 1.16. Sơ đồ mạch Schmitt – trigger dùng 741C

Như được hiển thị trong sơ đồ mạch, bộ chia điện áp với các điện trở R div1 và
Rdiv2 được đặt trong phản hồi dương của op-amp 741. Các giá trị tương tự của Rdiv1 và
Rdiv2 được sử dụng để nhận giá trị điện trở Rpar = Rdiv1/Rdiv2 được mắc nối tiếp với điện
áp đầu vào. Rpar được sử dụng để giảm thiểu điện áp bù. Điện áp trên R1 được đưa trở
lại đầu vào không đảo. Điện áp đầu vào (Vi) kích hoạt hoặc thay đổi trạng thái đầu ra
18



Vout mỗi khi vượt quá mức điện áp của nó trên một giá trị ngưỡng nhất định gọi là Điện
áp ngưỡng trên (Vupt) và Điện áp ngưỡng dưới (Vlpt).
Giả sử rằng điện áp đầu vào đảo ngược có giá trị dương nhỏ. Điều này sẽ gây ra
giá trị âm trong đầu ra. Điện áp âm này được đưa trở lại đầu cực không đảo (+) của opamp thông qua bộ chia điện áp. Do đó, giá trị của điện áp âm được đưa trở lại cực dương
trở nên cao hơn. Giá trị của điện áp âm trở lại cao hơn cho đến khi mạch được dẫn đến
bão hòa âm (-Vsat). Tiếp tục nếu điện áp đầu vào đảo ngược có giá trị âm nhỏ. Điều này
sẽ tạo ra giá trị dương trong đầu ra. Điện áp dương này được đưa trở lại đầu cực không
đảo (+) của op-amp thông qua bộ chia điện áp. Do đó, giá trị của điện áp dương được
đưa trở lại cực dương trở nên cao hơn. Giá trị của điện áp dương trở lại cao hơn cho đến
khi mạch được dẫn đến bão hòa dương (+ Vsat). Đây là lý do tại sao mạch cũng được đặt
tên là mạch so sánh có phản hồi.

Hình 1.17. Đồ thị điện áp

Khi Vout = +Vsat, điện áp trên Rdiv1 trở thành điện áp ngưỡng trên (Vupt). Điện áp
đầu vào, Vin phải dương hơn một chút so với Vupt để khiến Vo đầu ra chuyển từ + Vsat
sang -Vsat. Khi điện áp đầu vào nhỏ hơn Vupt, điện áp đầu ra Vout ở mức +Vsat.
Ngưỡng điện áp trên: Vupt = + Vsat (Rdiv1 / [Rdiv1 + Rdiv2])

19


Khi Vout = -Vsat, điện áp trên Rdiv1 được gọi là Điện áp ngưỡng dưới (Vlpt). Điện
áp đầu vào, Vin phải âm hơn một chút so với Vlpt để khiến Vo đầu ra chuyển từ -Vsat sang
+ Vsat. Khi điện áp đầu vào nhỏ hơn Vlpt, Vout điện áp đầu ra ở mức -Vsat.
Ngưỡng điện áp thấp hơn: Vlpt = -Vsat (Rdiv1 / [Rdiv1 + Rdiv2])
Nếu giá trị của Vupt và Vlpt cao hơn điện áp nhiễu đầu vào, phản hồi dương sẽ loại
bỏ các chuyển đổi đầu ra sai. Với sự trợ giúp của phản hồi dương điện áp đầu ra sẽ
chuyển đổi nhanh giữa điện áp bão hòa dương và âm.
Trễ:

Do mạch so sánh có phản hồi dương sẽ có độ trễ xảy ra ở đầu ra. Khi đầu vào của
bộ so sánh có giá trị cao hơn Vupt, đầu ra của nó chuyển từ + Vsat sang -Vsat và trở lại
trạng thái ban đầu +Vsat, khi giá trị đầu vào nằm dưới Vlpt. Điều này được thể hiện trong
hình dưới đây. Điện áp trễ có thể được tính là chênh lệch giữa điện áp ngưỡng trên và
dưới.
Vtrễ = Vupt - Vlpt
Giá trị của Vupt và Vlpt biểu diễn từ các phương trình :
Vtrễ= +Vsat (Rdiv1 / Rdiv1 + Rdiv2) - {-Vsat (Rdiv1 / Rdiv1 + Rdiv2)}
Vtrễ = (Rdiv1 / Rdiv1 + Rdiv2) {+ Vsat - (-Vsat)}
Đồ thị trễ được biểu diễn trên hình 1.18

Hình 1.18. Đồ thị trễ

20


PHIẾU ĐÁNH GIÁ KẾT QUẢ THỰC HÀNH
I. Thông tin chung
1. Tên bài thực hành: Mạch dao động đa hài
2. Kỹ năng luyện tập: Kiểm tra, lắp mạch
3. Người thực hiện (HSSV):………………………………Lớp: …………………
4. Người đánh giá: ………………………………………………………………….
II. Nơi dung đánh giá
Tiêu
TTT
chuẩn

1

2


3

Kỹ
thuật

An
tồn

Thời
gian

Bằng
chứng

Tiêu chí

Kết quả đánh giá
Đạt

Khơng
đạt

- Kiểm tra, lắp mạch dao động đa hài
lưỡng ổn.
- Kiểm tra, lắp mạch dao động đa hài
đơn ổn.
- Kiểm tra, lắp mạch Schmitt - trigger
- An toàn cho người
- An toàn cho thiết bị

(một trong 2 tiêu chí của tiêu chuẩn
này khơng đạt thì khơng được đánh
giá)
- Đúng giờ quy định
- Sớm hơn giờ quy định
- Muộn hơn giờ quy định
(q 03 phút thì khơng được đánh
giá)

Đánh giá chung:
Đạt:
Không đạt:

(tất cả các tiêu chuẩn phải đạt)
Quảng Ninh, Ngày…tháng …năm 20…
Người đánh giá
(ký, họ tên)

21


Bài 2. Mạch hạn chế biên độ và ghim áp
1. Mục tiêu của bài:
- Kiến thức:
+Trình bày được sơ đồ nguyên lý, nguyên lí làm việc, linh kiên điện tử, tiêu
chuẩn kỹ thuật, trình tự các bước lắp ráp mạch theo sơ đồ cho trước.
+ Phân tích được sơ đồ lắp ráp và dạng tín hiệu đầu ra.
- Kỹ năng:
+ Thực hiện được các bước lắp ráp mạch đúng trình tự và yêu cầu kỹ thuật.
+ Lắp ráp được các mạch đúng trình tự đảm bảo yêu cầu kỹ thuật.

+ Đo, khảo sát được dạng tín hiệu đầu ra theo yêu cầu.
- Năng lực tự chủ và trách nhiệm:
+ Ý thức nghiêm túc trong học tập.
+ Rèn luyện tác phong cơng nghiệp và an tồn trong học tập, lao động
Dụng cụ và vật tư:
a. Dụng cụ
Cho 1 nhóm (3 sinh viên):
STT

Dụng cụ

Đơn vị

Số lượng

1

Đồng hồ V.OM

Cái

1

2

Tesboard

Cái

3


3

Kiềm cắt

Cái

1

4

Nhíp

Cái

1

5

Dây cắm testboard

Cái

3

6

Mỏ hàn

Cái


1

7

Chì hàn

Cuộn

1

Ghi chú

b. Vật tư
STT

Vật tư

Đơn vị

Số lượng

1

Điode ; 1 C

Cái

4


2

Tụ điện các loại

Cái

4

3

IC 7805 ; IC 555

Cái

4

4

Điện trở R (4K7/1K)

Cái

6

22

Ghi chú


5


IC 7414

Cái

03

6

Tranzistor các loại

Cái

10

2. Nội dung bài:
2.1. Mạch hạn chế biên độ.
Trong hệ thống tuyến tính, khi một tín hiệu dạng sin tác động ở ngõ vào,
ngõ ra không bị biến dạng. Ở những hệ thống này, các linh kiện được dùng là
những phần tử tuyến tính. Đối với những phần tử khơng tuyến tính (phi tuyến ) đặc
tuyến Volt-Ampere khơng là đường thẳng. Đặc tính khơng tuyến tính được áp dụng
trong việc biến đổi dạng sóng ngõ vào. Dạng sóng này rất hữu dụng trong những
ứng dụng kỹ thuật xung.
Một dạng mạch được khảo sát trong chương này mà dạng sóng ra khơng
tuyến tính gọi là mạch hạn chế biên độ. Mạch hạn chế biên độ cũng được xem
tương đương như một mạch hạn chế biên độ, mạch chọn điện áp, hay mạch chọn
biên độ.
Mạch định mức DC của tín hiệu AC đạt đến một mức xác định, mà khơng
bị biến dạng sóng gọi là mạch ghim điện áp. Mạch ghim điện áp được dựa trên cơ
sở như một mạch phục hồi thành phần điện áp DC. Nó dùng để ổn định nền hoặc

đỉnh của tín hiệu xung ở một mức xác định nào đó bằng hoặc khác khơng. Như vậy
mạch sẽ ghim tín hiệu ở những mức DC khác nhau.
2.1.1. Mạch hạn chế biên độ dùng Đi ốt
Theo cách mắc của Diode, chia mạch hạn chế biên độ dùng Diode thành hai
loại song song và nối tiếp.
- Mạch hạn chế nối tiếp có Diode được mắc nối tiếp với tải.
- Mạch hạn chế song song có Diode được nối song song với tải.
Theo chức năng, mạch hạn chế biên độ nối tiếp và song song được chia
thành hai loại hạn chế biên độ âm, hạn chế biên độ dương và mạch hạn chế biên
độ hai phía.
- Hạn chế biên độ âm là cắt bỏ thành phần âm của dạng sóng tín hiệu vào và
chỉ giữ lại thành phần dương.

23


- Hạn chế biên độ dương là cắt bỏ thành phần dương của dạng sóng tín hiệu
vào và chỉ giữ lại phần âm
Hạn chế biên độ hai phía là cắt bỏ cả thành phần âm và thành phần dương
của tín hiệu vào một mức nào đó.
a. Mạch hạn chế biên độ dương
 Dạng mạch 1 (hình 2.1):

Hình 2.1. Mạch hạn chế biên độ dương dạng 1

 Dạng mạch 2 (hình 2.2)

Hình 2.2. Ngưỡng hạn chế biên độ VDC = V

 Dạng mạch 3 (hình 2.3)


Hình 2.3. Mạch hạn chế biên độ dương dạng 3
b. Mạch hạn chế biên độ Âm
Xét tín hiệu ngõ vào là dạng sóng sin có biên độ max là ±V
Dạng mạch 1
Đối với Diode thực tế, khi phân cực thuận thì có dạng tương đương như hình 2.4:

Hình 2.4.
24


×