Tải bản đầy đủ (.pdf) (1 trang)

Kỳ thi chọn lọc học sinh giỏi quốc gia THPT năm 2013 môn Toán pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (63.42 KB, 1 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA THPT
NĂM 2013
ĐỀ THI CHÍNH THỨC
Môn : TOÁN
Thời gian : 180 phút (không kể thời gian giao đề)
Ngày thi thứ hai : 12/01/2013


Bài 5 (7,0 điểm). Tìm tất cả các hàm số
:f

R R
th

a mãn :
(0) 0
f
=
,
(1) 2013
f
=


2 2 2 2
( )( ( ( )) ( ( ))) ( ( ) ( ))( ( ) ( ))
x y f f x f f y f x f y f x f y
− − = − −

đ
úng v



i m

i ,x y

R
, trong
đ
ó
2 2
( ) ( ( ))
f x f x
=
.


Bài 6
(7,0
đ
i

m). Cho tam giác nh

n ABC n

i ti
ế
p
đườ
ng tròn (O) và

đ
i

m D thu

c cung

BC
không ch

a
đ
i

m A.
Đườ
ng th

ng

thay
đổ
i
đ
i qua tr

c tâm H c

a tam giác ABC c


t
các
đườ
ng tròn ngo

i ti
ế
p tam giác ABH và tam giác ACH l

n l
ượ
t t

i M và N
( , )
M H N H
≠ ≠
.
a)

Xác
đị
nh v

trí c

a
đườ
ng th


ng


để
di

n tích tam giác AMN l

n nh

t.
b)

Ký hi

u
1
d

đườ
ng th

ng
đ
i qua M và vuông góc v

i DB,
2
d


đườ
ng th

ng
đ
i qua
N và vuông góc v

i DC. Ch

ng minh r

ng giao
đ
i

m P c

a
1
d

2
d
luôn thu

c m

t
đườ

ng tròn c


đị
nh.


Bài 7
(6,0
đ
i

m). Tìm t

t c

b

s

p th

t


( , , , ', ', ')
a b c a b c
th

a mãn:


' ' 1(mod15)
' ' 1(mod15)
' ' 1(mod15)
ab a b
ac a c
bc b c

+ ≡




+ ≡



+ ≡




v

i
{
}
, , , ', ', ' 0,1, ,14
a b c a b c


.

H

T

Thí sinh không
đượ
c s

d

ng tài li

u và máy tính c

m tay.

Giám th

không gi

i thích gì thêm.

×