Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (70.88 KB, 1 trang )
30 1
12.3. Discrete-Time Fourier Transform.
e
It wonld be comwiierit to iise the advantages oflooking a t continuous-time signals in the frequency-clomain with ciiscrrte-the signa
To this end we ad1 be
introducing t h r discrete counterpart 1o the Fourier transform, the discrete-time
Fourier lransfvrrri (DTFT). As with the Fourier and Laplace transforms, its ust
in the frequency-dornain requires an inverse transform, t r aiisform pairs. theorems
and symmetry properties.
e ~ ~ i tofi the
o ~
iscrete-Time Fourier
As a series z [ k ]is only dcfincd for discrete values of k E Z,we cannot use the
Fourier iritegral (9.1) introduced in Chapt,er I). We therefore ctefine t,he discretetzme Fourzer transform or the
transform as:
(12.13)
It transforms a series .r[X]into a coritimious complex fiinct?ionof a real variable $2.
X ( e J " ) is also called the speetrum of U senes. In contrast to a coiilinuoiis signal,
il is periodic wit li 2n, so
X ( e 3 ( $ 2 + 2 q= SjeJ").
(12.14)
, as each term of the sum in (12.13) contains a 27i-periodie term
i27k'L
111 order to see this more cleaily. w~ miritc elf' as the argument of l,he .E*
transform arid d&nc the Fourier transform over the unity circle of the complex
plane. This coiivcntion will make Ihe transfer t o the z-transforiii easier.