Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.96 KB, 1 trang )
Introduction to Modern Economic Growth
5.12. Exercises
Exercise 5.1. Recall that a solution {x (t)}Tt=0 to a dynamic optimization problem
is time-consistent if the following is true: whenever {x (t)}Tt=0 is an optimal solution
starting at time t = 0, {x (t)}Tt=t0 is an optimal solution to the continuation dynamic
optimization problem starting from time t = t0 ∈ [0, T ].
(1) Consider the following optimization problem
max
{x(t)}T
t=0
T
X
β t u (x (t))
t=0
subject to
x (t) ∈ [0, x¯]
G (x (0) , ..., x (T )) ≤ 0.
Although you do not need to, you may assume that G is continuous and
convex, and u is continuous and concave.
Prove that any solution {x∗ (t)}Tt=0 to this problem is time consistent.
(2) Now Consider the optimization problem