Tải bản đầy đủ (.pdf) (1 trang)

Economic growth and economic development 288

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.55 KB, 1 trang )

Introduction to Modern Economic Growth
some x (1) ∈ G (x (0)). In view of Assumption 6.1, V ∗ (x (0)) is finite. Moreover,

Assumptions 6.1 and 6.2 also enable us to apply Weierstrass theorem to Problem
A1, thus there exists x ∈Φ (x (0)) attaining V ∗ (x (0)) (see Mathematical Appendix).

A similar reasoning implies that there exists x0 ∈Φ (x (1)) attaining V ∗ (x (1)). Next,

since (x (0) , x0 ) ∈ Φ (x (0)) and V ∗ (x (0)) is the supremum in Problem A1 starting
with x (0), Lemma 6.1 implies

V ∗ (x (0)) ≥ U (x (0) , x (1)) + βV ∗ (x (1)) ,

= U (x (0) , x0 (1)) + βV ∗ (x0 (1)) ,

thus verifying (6.11).
Next, take an arbitrary ε > 0. By (6.10), there exists x0ε = (x (0) , x0ε (1) , x0ε (2) , ...) ∈Φ (x (0))

such that

¯ (x0ε ) ≥ V ∗ (x (0)) − ε.
U
Now since x00ε = (x0ε (1) , x0ε (2) , ...) ∈ Φ (x0ε (1)) and V ∗ (x0ε (1)) is the supremum in

Problem A1 starting with x0ε (1), Lemma 6.1 implies

¯ (x00ε ) ≥ V ∗ (x (0)) − ε
U (x (0) , x0ε (1)) + β U

U (x (0) , x0ε (1)) + βV ∗ (x0ε (1)) ≥ V ∗ (x (0)) − ε,
The last inequality verifies (6.12) since x0ε (1) ∈ G (x (0)) for any ε > 0. This proves



that any solution to Problem A1 satisfies (6.11) and (6.12), and is thus a solution
to Problem A2.
To establish the reverse, note that (6.11) implies that for any x (1) ∈ G (x (0)),
V (x (0)) ≥ U (x (0) , x (1)) + βV (x (1)) .
Now substituting recursively for V (x (1)), V (x (2)), etc., and defining x = (x (0) , x (1) , ...),
we have
V (x (0)) ≥

As n → ∞,

Pn

t=0

n
X

U (x (t) , x (t + 1)) + β n+1 V (x (n + 1)) .

t=0

¯ (x) and since V (x) is finite for any x ∈ X,
U (x (t) , x (t + 1)) → U

β n+1 V (x (n + 1)) → 0, we obtain

¯ (x) ,
V (x (0)) ≥ U
for any x ∈Φ (x (0)), thus verifying (6.9).

274



×