VNUJournalofScience,EarthSciences23(2007)235‐243
235
Quaternarysedimentarycyclesinrelationto
sealevelchangeinVietnam
TranNghi*,NguyenThanhLan,DinhXuanThanh,
PhamNguyenHaVu,NguyenHoangSon,TranThiThanhNhan
CollegeofScience,VNU
Received20November2007;receivedinrevisedform15December2007
Abstract.Vietnam has over 3200 km shoreline which extends from north to south of the country.
Sealevelchangeswere principalfactorsinfluencedonsedimentaryenvironmentandcompositions.
InQuaternary,cyclesofsealevelchangeandtectonicmovementweremainfactorthatcreatedRed
River delta, Nam Bo plain and Central
plain. There are 5 sedimentary cycles corresponding to 5
cycles of sea level change of the Red River delta and Nam Bo plain. Sedimentary cycles were
characterizedbysedimentarycoefficientssuchas:grainsize,claycontent,indexofcationFe
2+
/Fe
3+
exchange,pHvariationfromthestarttotheendofcycles.Theyarerepresentedbyfluvialterraces,
marine terraces, marine notches and peat layers. In central littoral plain, the relationship between
sedimentary cycles and sea level is represented by five sandy cycles and distribution of coral
terracesinshallowsea.
There
are 5 generations of ancient shoreline zones, which correlated with glacial and
interglacialperiodsinVietnamesecontinentalshelf:theshorelinein30mwaterdepthiscorrelated
with (Q
2
1-2
). Up to 60 m water depth is correlated with (Q
1
3b
‐Q
2
1
) and 100‐120 m water depth is
correlated with Wurm
2
glaciation (Q
1
3b
)(?). In 200‐300 m water depth correlated with Wurm
1
glaciation(Q
1
3a
)(?),at400‐500mwaterdepthcorrelatedwithRissglaciation(Q
1
2b
)(?),at600‐700m
waterdepthcorrelatedwithMindelglaciation(Q
1
2a
)(?),andat1000‐1500mwaterdepthcorrelated
with Gunz glaciation (Q
1
1
)(?). As such Quaternary sea level changes in mainland and continental
shelfinteractedandquitedistinctiveformeachotherbypendulumrule.
Keyw ords:Quaternarysedimentarycircles;RedRiverDelt a;CuuLongRiverDelta;Sealevelchange.
1.Introduction
*
Vietnamhas over 3200 km shoreline which
extendsfromMongCaiinthenorthtoHaTien
in the south. Sea level changes had influenced
_______
*Correspondingauthor.Tel.:84‐4‐5587059
E‐mail:
onsedimentaryenvironmentandcompositions
and the evolution sedimentary cycle of Red
RiverDelta,CuuLongRiverDeltaandCentral
Coastalplains.Thesecyclesweredistinguished
by absolute age dating include: thermo‐
luminescence age,
14
C dating from wood and
shells. Geomorphological characteristics and
sedimentary coefficients were used together
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
236
with absoluteages to analyzethecause‐effect
relationship between development of
sedimentary cycles, sea level changes, and
tectonicmovementinQuaternary.
2.Methodology
There are many research projects have
undertaken by Vietnamese scientists on
Quaternary sea level change, especially in Late
Pleistocene to Holocene. However, the
identification of transgression
and regression
phases and lithofacies analysis based on
quantitative approaches such as material
compositions, geochemical environmental
coefficients, have just applied by Tran Nghi,
MaiThanhTanandotherworkersin2000,2001
[6, 8]. Therefore, in this paper, we will use the
same approaches to analyze the cause‐effect
relationshipbetween
lithologicalcharacteristics
and lithofacies associations in relation to
transgressionandregressionphaseandtectonic
movements: fluvial and marine terraces in
mainland and in continental shelf that are
distributed in different height and depth and
compare them to the transgression and
regressionsystemofancientshorelines.
For investigating mechanism of
sedimentary
evolutionofRedRiverDelta,Cuu
Long River Delta and Central plains, it is
necessarytodefinethecause‐effectcorrelation
between lithology, sea level change, and
tectonic movement. The sedimentary
environment has major role in governing
petrological compositions in term of lithofacies
‐ paleogeography. The transgression phase is
characterized by
marshy, lagoonal and deltaic
environments. Meanwhile, regression pha ses
createdcoarse‐grainedmaterialsofproluvial‐
aluvialenvironments.Therefore,therelationship
between sedimentary cycles and sea level
change is determined by changing of facies
associationaccordingtotimeandspace.Theend
of a cycle is marked by a weathering period to
form
laterite‐bearing,yellowtoredsediments.
Vietnam (Tran Nghi) North West Europe
Archaeology
Absolute
age (Ka)
Geological
age
Sedimentary
cycles
Regression
Transgression
Stratigraphy
Regression
Transgression
British Alper (Penk) Italy Middle East
Poland
(Sapherlevin)
Russia
(Lakovlep)
North of
America
(East)
Human
species
Cultural
periods
Q
2
3
?
HOLO-
CENE
Holocene
Flandrian
Transgression
Holocene
Transgression
Holocene
Transgression
Holocene
Transgression
“Nizza”
Transgression
Holocene
Transgression
Transgression
Mogine
Holocene
Transgression
Mesolithic
and
Neolithic
Q
1
3b
-Q
2
3
Regression Regression W
2
Regression
Baltic
Glaciation
Astakop-
vandai
Viskosine (2)
Modern
human
Upper
Q
1
3b
?
Weich-
sebian
Transgression
Regression
Khanstanton
W
1
-W
2
?
W
1
Regression Muzur
Vacsava II
Deglaciation
Mologo sek
nhim Kalinin
V
1
-V
2
Viskosine (1)
Nean-
dectane
Middle
Late
Eemian Transgression
Upper Ixla
Khocnen
R-W
1
Pantinian
Tyrhenian Mazoves II Mikulin
Odinsop
Q
1
2b-3a
?
Saalian Regression Dzippin Riss Regression Vacsava I Dnheprop
Holsterian Transgression
Lower
Khocnen
M-R
? Mazoves I Likhvin
Pre
Nean-
dectan
and pre
Sapien
Lower
Middle
Q
1
2a
?
Elsterian Regression
Logestophoc
Glaciation
Mindel
Regression Krakop Acient
glaciation 1,2
Cromeriam
complex
Transgression Cromerian G-M Cromerian
Roman
crotorian
Sandomir Acient
deglaciation
Q
1
1b
?
Menapian Regression Crue Gun Cassia
Siciian Laroslap Acient
glaciation
Early
Paleolithic
Waal D-G
PLEISTOCENE
Early
Q
1
1a
?
Eburonian
D
Emilian
Tiglian
Practiglian
10
125
700
900
1.6
2-2.5
Ma
PLIOCENE
Reuverian
Heidel-
berg
species
Fig.1.Comparisonofsealevelchange‐glacial‐interglacial‐sedimentarycyclesandgeologicalage[9].
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
237
Themainmethodsusedinthispaperare:
‐Petrologicalanalysismethodwascarriedout
using thin sections, made by cementing epoxy
ofunconsolidatedsands.
‐Granulometricanalysisofsandwasusedby
sets of sieve or pipet of different fractions and
then granulometric parameters (Sorting‐So,
Asymetric coefficient‐Sk, average
grain size‐
Md)wereobtainedbyaPCsoftware.
‐ Geochemistry environmental coefficientsof
sediments was measured by specialized meter
andthenobtained:pH,Eh,Kt,Fe
2+
/Fe
3+
These
pH‐alkaline‐acidindex,Eh‐redoxpotention
index,Kt=(Na
+
+K
+
)/(K
2+
+Mg
2+
)exchanging
cation coefficients were applied in lithofacies
association analysis and reconstruction of
paleogeographicallandscape.
3. Transgression‐regression cycles of Red
River Delta, Cuu Long River Delta, Central
plaininQuaternary
RedRiverDelta(RRD)andCuuLongRiver
Delta(CLRD)arethebiggestplainsinVietnam.
Developing history and
sedimentary evolution
of both deltas have closely related with sea
level changes in Quaternary in which
regression were according Gunz, Mindel, Riss,
Wurm
1
,Wurm
2
glacialphasesandtransgressions
were correlated with interglacial phases and
Flandrientransgression.
Five sedimentary cycles in RRD and CLRD
werecorrelatedwith5stratigraphicformations:
inearlyPleistocene(Q
1
1
),Middle‐LatePleistocene
(Q
1
2-3a
),LatePleistocene(Q
1
3b
),latepartofLate
Pleistocene‐Middle Holocene (Q
1
3c
‐Q
2
2
) and
Late Holocene in each delta (Fig. 1‐6) [2]. The
beginning of a cycle wa s related with coarse
grained size pebbles, sands proluvial and
alluvialfaciessedimentwhatismainlandorigin
and the ending was related with fine grained
sizesilt,claydeltaicandlagoonalfacies.
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
Depth
(m)
BH59-64
605
BH-11
105
To Lich
river
Red River
BH2-HN
156
BH3-HN
180
BH4-HN
a.amQ
2
3
tb
a.amQ
2
3
tb
apQ
1
2
-3
hn
a.amQ
2
3
tb
am lbQ hh
2
1-2
amQ
1
3b
vp
amQ
1
3b
vp
amQ
1
3b
vp
aQ
1
1
lc
N
2
2
vb
aQ
2
3a
tb
~
.
~
.
~
.
~
~
.
~
.
~
~
.
~
.
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
~
.
aQ
2
3
tb
a.amQ
2
3
tb
Fig.2.Litho‐faciescrosssection
inthecenterofRedRiverDelta[3].
ha no i
Thai
Nguyen
Viet Tri
Phuc
Yen
Son
Ta y
Ha
Dong
Hung
Yen
Hai
Duong
Hai
Phong
Kien
Xuong
Vinh Ni nh
Nam
Dinh
aQ
2
3a
tb
aQ
2
3b
tb
N
2
>
8
0
m
Q
:
6
0
-
8
0
m
1
1
l
c
Q
1
2
-
3
a
h
n
Q
1
3
b
v
p
N
a
m
Q
2
3
t
b
m
m
b
Q
2
1
-
2
h
h
a
m
Q
2
1
-
2
h
h
a
Q
1
3
b
v
p
a
p
Q
1
2
-
3
h
n
a
p
Q
I
I
-
I
I
I
1
h
n
a
p
Q
1
1
l
c
a
p
Q
I
l
c
Red River Dam
Te rr ac e
Aluvial - proluvial pebbles - gravel facies
Plain channel deposited facies
Spotted weathering marine clay
Eroided area
ap
a
m
h
2
h
1
Q
2
1-2
hh
Fig.3.Blockdiagramofalluvialfacies
inRedRiverDelta[11].
Thefirstsedimentarycycle(EarlyPleistocene,
Le Chi Formation in RRD and Trang Bom
Formation in CLRD) are characterized by
coarse grained size sediment with content of
pebbles‐gravel increased from 15 to 20.8% in
RRD and 13.8% in CLRD [2]. The ending of
cycles was correlated with interglacial phase,
silty
claydeltaic‐marshyfacies(Md=0.1‐0.5mm
in RRD and Md=0.018‐0.439 mm in CLRD).
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
238
During maximum sea level rise, erosion‐
accumulationterraces of55‐70mhigh inNEof
RRD were formed. Meanwhile, lit hofacies
associationofsandybarriersandlagoonalfacies
isthemainfeatureinCentralcoastalplainfrom
Quang Binh Province to Mui Ne‐Phan Thiet,
BinhThuanProvince.
The second
sedimentary cycle from Middle
‐ Late Pleistocene (Hanoi Formation in RRD
andThuDucFormationinCLRD)iscomprised
by thick pebble‐gravel layer (10‐80 m) of
mountainous river and proluvial facies
(Md=0.2‐1 mm in RRD and Md=2.3 mm in
CLRD[2]).Bytheendofthissedimentarycycle,
rock composition composes of clayish marshy
and clayish silt deltaic facies in Thanh Hoa
plain, RRD, CLRD, and ancient sandy bars,
tombololagoonalfaciesinCentralplain.
Thethird sedimentarycyclecorrespondsto
Late Pleistocene (Vinh Phuc Formationin RRD
and Cu Chi or Moc Hoa in CLRD), which
contains coarse
and medium grained sands of
riverbedfaciesandpassingupwardsintosand
levee facies, silty clay flood plain and clay
marshy, greenish lagoonal facies. In Central
plain, late Pleistocene transgression phase
createdbigvolumeofwhitequartzsandybars.
However,thesewhitesandhavebecameyellow
sanddueto
infiltrationweathering.
30 30
20 20
10 10
0 0
-10 -10
-20 -20
-30 -30
-40 -40
-50 -50
-60 -60
-70 -70
-80 -80
-90 -90
Tam G ia n
g
la
g
oon
BH 407
BH 314
BH 312
Huong river
Q
1
3b
mQ
1
3b
amQ
2
3
mQ
2
1-2
mvQ
1
2-3a
mvQ
1
3b
aQ
1
2-3a
amQ
1
2-3a
amQ
1
1
aQ
1
1
mvQ
1
1
mQ
1
1
mQ
1
3b
mQ
2
1-2
mvQ
2
3
mQ
2
3
mQ
1
2-3a
Fig.4.Litho‐faciescrosssection
ofThuaThienHuePlain[4].
The fourth sedimentary cycle was formed
duringperiodfromLatestPleistocenetoEarly‐
MiddleHolocene(HaiHungFormationinRRD
and Tan Thanh or Binh Chanh Formation in
CLRD). This sequence is characterized by
Flandrien transgression sedimentary facies
complex and composed of sandy silt of deltaic
facies,claysiltrichin
organicmaterialandpeat
ofmarshy facies. These layers were coveredby
grey‐greenishclayoflagoonalfacies.Thecoastal
plains in Central Vietnam, from Nghe An to
BinhThuanprovinces,composeofacombinat io n
of coastal sandy bars and lagoons occuring
inside sandy bars. The associations of tombolo
and
bay was quite typical in South Central
Vietnam, especially in Khanh Hoa Province.
a
a
a
a
a
a
m
Q
2
2
-
3
a
b
Q
2
2
-
3
a
b
Q
2
2
-
3
a
m
Q
2
1
-
2
a
m
Q
2
1
-
2
a
m
b
Q
2
1
-
2
m
b
Q
2
1
-
2
a
m
Q
2
1
-
2
0
20
-10
0
-20
0
0
20
-100
Lk17
Lk209
Lk214a
Lk31MT
Lk325
500
400
479.6
501.7
396.2
Lk812
339.6
Lk819
203.9
Vam C o Dong
River
Sai Gon River
Lk816
169
Co Chien River
Ham Luong River
Vam C o Tay
River
Dong Nai
River
+
+
+
+
+++ +
+
U
U
U
U
U
U
UU
U
U
U
U
Lk817
75
Lk818
396
Bk11
80
Hau River
Tien River
Fig.5.SedimentarycrosssectioninCuuLongRiverDelta[9].
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
239
Geological
Age
Age of
Sedimentary
Cycles
TL age
(Ka)
No samples
and place name
Sandy cycles
Lithology
Lithology
Envi.
Envi.
Cycles of
lagoonal plain
Detrital minerals of
sandy barrier
Q (%)
F(%)
R(%)
Sorting
Rounding
Sea level
(Reg -
Trans)
So
Ro
H O L O C E N E
Early - Middle
Late
P L E I S T O C E N E
Early
Middle Late
Late Holocene
Late Pleistocene
Middle Holocene
Late
Pleistocene
Middle - Late
Pleistocene
Late part of.
Early Pleis
10
6
125
700
1.6
Ma
Q
2
3
Q-Q
12
3c 1-2
Q
1
3b
Q
1
2-3a
Q
1
1
14+2
14+2
28+4
48+6
52+7
62+6
85+9
99+19
101+17
103+11
122
>181
>204
108+49
VN44
VN12
VN45
VN37
VN18
VN30
VN15
VN12b
VN31
VN20
VN29
VN32
VN14b
VN14
Bau Trang
Tuy Phong
P. T Airport
Suoi Tien
Chi Cong
S. Song Luy
Suoi Tien
Tuy Phong
Hon Rom
Chi Cong
S. Song Luy
H. Rom
Suoi Tien
Suoi Tien
mv
m
mv
m. mv?
m
mv
m
mv
am, m
am
m
mb
a, am
m
am
a
m
am
a
m
am
a
98-100
95-9892-98
92-98
90-98
0-1.00.5-2.01-3.01.0-2.01.0-3.0
0-1.0
0.5-3.0
1.0-8.0
1.0-7.01.0-7.0
1.2-1.51.3-1.71.3-1.81.5-1.81.5-1.8
0.6-1.0
0.6-0.9
0.5-0.9
0.6-0.9
0.6-0.8
W2
W1-W2
W1
R-W1
R
M-R
M
G-M
G
Fig.6.Comparisonofthermoluminescenceagesofquartzsandybarrier
andsedimentarycyclesinBinhThuanProvince,Vietnam[9].
The fifth sedimentary cycle was formed in
Late Holocene regression phase (Thai Binh
Formation in RRD and Can Gio Formation in
CCRD).Thiscycleisdominatedby sands,silts,
clay alluvial facies in upper part and silt, clay
deltaic plain, grey clay marshy and sand silt
clay deltaic front facies in
lower part. Besides,
Late Holocene eolian sediments have been
formedbywindreworkingoldsandyformation.
In addition, the fifth cycle was also eolian
sedimentinsandybarsandsandydunesin CLRD.
4.Thermoluminescenceageofredsandycycles
inPhanThiet‐BinhThuanprovinces
The coastline of South
Central Vietnam is
dominated by extensive sandy coastal barrier
successions of Early Pleistocene, Middle‐Late
Pleistocene, LatePleistoceneandLatePleistocene
toEarly‐MiddleHoloceneandLateHolocene.
The first cycle: an angular tektite layer
coveredalternativeredandwhite‐yellowsand
barrier of Early Pleistocene. Probably, this red
sandsuccession
shouldhaveageolderthanthe
age of tektites (i.e. before 700 Ka) [1]. The
comparison of these successions with glacial
and interglacial in the world (Fig. 1)
correspondstointerglacialGunz‐Mindel.
Fig.7.Thesequenceofredsandandlightgreysand,
ChiCong,BinhThuanProvince,Vietnam[7].
The second cycle, composing of 2 rhythms,
was possibly equivalent to older grey‐white,
wellcementedsandbarrierofMiddlePleistocene
age (Q
1
2a
) (TL age of >204 Ka [1]). Moderate
cemented red sand barrier of Middle‐Late
Pleistocenearedominatedbyinnerbarriers.The
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
240
sandy samples yielded an age of 103±11 Ka ,
101±17Ka[1],possiblyequivalenttostage5oflast
interglacialsensulatooftheOxygenIsotoperecord .
Thethirdcyclecomprisesbyaseriesofred
and yellow sand successions of barriers
dominated in coastal zone of South Central
Vietnam
from Phan Thiet to Tuy Phong. This
cycle over lies of Middle‐Late Pleistocene
sandy barrier successions the boundary
between second cycle is exposed and third
cycle in Hon Rom, Chi Cong, Suoi Tien and
Song Luy. The alternation of red sand and
yellowsandrhythmsrelatedtosealevelchange
andinfiltrationweatheringinlatePleistocene.
SampleVN31yieldedanage101±17Ka[1].
Sample VN31 yieldedan age of 101±17 Ka,
andVN32‐anageof108±49Ka(HonRom)[1].
ThisagerangebelongstoLatePleistocenecycle
whicharesuggestiveofdepositionduringstage
5(sensulato)oftheOxygenIsotoperecord.
Thefourthcyclecomposedoftworhythms:
an eolian red sand dunes of Late Pleistocene
(sampleat Phan Thiet airport yieldeda TL age
of 28±4 Ka) correlated with stage 2 and 3, and
white sand barriers oxygen isotope to be
equivalent with
last glacial maximum (W
2
) of
Early‐MiddleHolocene.
The fifth sandy cycle reworked Holocene
quartzsandybarriertoformsand duneduring
3Katopresent.TheSouthCentralcoastalzone
betweenPhanThietandTuyPhongisdominated
on surface by light yellow active dune fields
due to reacting of wind, possibly correlated
withHoloceneregressionandsealevelrise.
5. Cycles of coral reef in relation to sea level
change in coastal zone and shallow sea of
CentralVietnamarea
Coral reefs occur in 3 locations in shallow
seaofSouthCentralVietnam(Fig.8).
Middle‐LatePleistocenecoralreefs,which
were
calcified,occur in Hon Do‐Ninh Thuan.
This layer is covered by red sand. Late
Pleistocene coral reef terrace is distributed in
20‐25 m water depth. Middle Holocene coral
reef terraces are located in 1‐2 m water deep
yieldandageof5000yearBPbyC
14
dating.
Distribution of calcified coral reefs in
comparisonwithredsand(19Ka)showedthat:
this layer could have been formed in Middle‐
Late Pleistocene transgression and Vinh Phuc
transgression that created red sand and coral
reefin20‐25mwaterdepth.Theredsandlayer
coversthecoral.
Fig.8.DevelopmentperiodsofcoralinSouthCentral
area(HonGomPeninsula).
Thecoralterracein20‐25mwaterdepthwas
formedinFlandriantransgression.Thiswasthe
second sea level stands in Holocene and it is
correlative to ancient shorelines. The coral reef
at 1‐2m water depth, formed in Early‐Middle
Holocene,iscorrelatedwithwhitesandinCam
RanhandHonGom.
Q
2
1-2
Q
1
3b
20-25m
Q
2
2
Q
2
3
Q
2
2
Q
1
3b
m
v
Q
2
3
Red-Yellow
sand
White
sand
5
K
a
a
c
b
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
241
Fig.9.LateritegravelinbottomsedimentinSW
EasternSea.
Fig.10.Foraminifera,diatomea,quaczitefragments
andfragmentsofdaciterockinbottomsedimentsin
SWofEasternSea.
Fig.11.WeatheringspottedclayinLatePleistocene
sedimentinSWofEasternSea.
6.Quaternaryshorelinesinbottomofcontin ental
shelfofVietnam
6.1.Ancientshorelines
The well‐sorted and well‐round ancient
sandy bars distributed parallel to modern
shoreline.
Well‐round laterite gravels are situated in
sea bottoms far from modern coastline. This
layer is covered by spotted clay la yer which
containedlaterite
curdles.
Concentrationofcoarse‐grainedterrigeneous
sediment and moderate to well‐roundness
bioclasts[9].
Location of ancient shoreline in continental
shelf[8]:
‐In30mwaterdepthcorrelatedwith(Q
2
1-2
).
‐In60mwaterdepthcorrelatedwith(Q
1
3b
‐Q
2
1
).
‐ In 100‐120 m water depth correlated with
Wurm
2
glaciation(Q
1
3b
).
‐ In 200‐300 m water depth correlated with
Wurm
1
glaciation(Q
1
3a
).
‐ In 400‐500 m water depth correlated with
Rissglaciation(Q
1
2b
).
‐ In 600‐700 m water depth correlated with
Mindelglaciation(Q
1
2a
).
‐In1000‐1500mwaterdepthcorrelatedwith
Gunzglaciation(Q
1
1
).
6.2. Relationship between marine terraces and
sedimentarycyclesintheseabottom
In Quaternary, appearance of fluvial and
marine terraces in mainland and continental
shelf are the results of uplift‐subsidence
movements and transgression‐regression
phases. Five ancient marine terraces on
mainland and 6 on continental shelf [9] from
Pleistocene
toHoloceneagescanbeidentified.
These terraces have symmetric relation, it
means that the oldest marine terrace on
mainlandisathighestelevation(highestpoint)
and the oldest marine terrace on continental
shelfisatlowestelevation(deepestpoint)(Fig.
12). The marine terraces on mainland and
continental shelf
of the same age were formed
in the same sedimentary cycle. These periods
extended from Pleistocene to Holocene. Thus,
sea level changes combined with uplift
activities on mainland and subsidence in sea
bottom characteristic marine terraces systems
hadproduced.
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
242
Height
(m)
Terraces
Sea terraces on mainland Age of Continental shelf sediment
100
80
60
40
20
10
0
-50
-100
-200
-400
-500
-600
-2000
-2500
Qb
I
VI
V
V
IV
III
II
I
I
II
III
IV
V
VI
Qa
I
Qa
I
Qa
II
Qa
II
Q-Q a
II III
1
Qa
III
1
Q
III
2
Q
III
2
Q-Q
III IV
21
Q
IV
3
Q
IV
3
Q
IV
3
Q
IV
2
Qb
II-III
1
Qb
III
2
Q
I
Q
III
Q
IIIB
2
Q
IIIA
2
Q
IIIb
2
Q
II
1
Q
I
1
Q
IV
2
Q
IV
3
Q
IV
3
Q-Q
III IV
21
Q-Q
III IV
21
Q
IIIa
1
1
120
7
7
6
6
5
5
4
4
3
3
22
2
1
1
Glacier phases
Wurm
(W)
Riss
(R)
Mindel
(M)
Gunz
(G)
Dunai
(D)
Fig.12.RelationshipbetweenseaterracesandPliocene‐Quaternarysedimentarycycles
incontinentalshelfofVietnam[10].
7.Conclusions
In Quaternary, cycles of sea level change
and tectonic movement cycles are the main
reasons, which create Red River Delta, Cuu
LongRiverDeltaandCentralplain.Thereare5
sedimentarycyclescorrespondingto5cyclesof
sea level change in Red River Delta, Cuu Long
River Delta, and
Central plain. In Central
littoral plain, the relationship between
sedimentary cycles and sea level change is
characterized by 5 sandy cycles and
distributionofcoralterracesinshallowsea.
Thereare5generationsofancientshoreline
zones,whichcanbecorrelatedwithglacialand
interglacial phases in Vietnamese continental
shelf:
at30mwaterdepthcorrelatedwithQ
2
1-2
;
at60mwaterdepthcorrelatedwithQ
1
3b
‐Q
2
1
;at
100‐120 m water depth correlated with Wurm
2
glaciation Q
1
3b
; at 200‐300 m water depth
correlatedwithWurm
1
glaciation(Q
1
3a
);at400‐
500 m water depth correlated with Riss
glaciation Q
1
2b
; at 600‐700 m water depth
correlated with Mindel glaciation Q
1
2a
; and at
1000‐1500 mwaterdepthcorrelatedwithGunz
glaciationQ
1
1
.Theseanc ientshorel inescorrelated
with marine terraces and 6 sedimentary cycles
incontinentalshelf.
References
[1] V.M.W. Colin, G.J. Brian, Tran Nghi, M.P.
David, et al., Thermoluminescence ages for a
reworkedcoastalbarrier,southeasternVietnam:
a preliminary report, Journal of Asian Earth
Sciences20(2002)535.
[2] Nguyen Huy Dung et al., Neogene‐Quaternary
stratigraphicaldivision andNamBo plainstructure
research, Department of Geology
and Mineral
Resource,Hanoi,2003(inVietnamese).
[3] TranNghi,NgoQuangToan, Characteristics of
sedimentary circles and history of Quaternary
geology of Red River Delta, Journal of Geology
206‐207(1991)31(inVietnamese).
[4] Tran Nghi, Circles of marine transgression,
regression, and formation history of Central
plains in Quaternary,
New discoveries in
archeology in 1995 year, Hanoi, 1996 (in
Vietnamese).
[5] Tran Nghi, Evolution of coastal sandy
formations in Central Vietnam in relationship
TranNghietal./VNUJournalofScience,EarthSciences23(2007)235‐243
243
with the oscillation of sea level in Quaternary.
Project Marine geological research and Geophysics
(II),InstituteofOceanography,Hanoi,1996.
[6] Tran Nghi, Nguyen Dich Dy, Dinh Van Thuan,
VuVanVinh,MaKongCo,TrinhNguyenTinh,
Phan Thiet red sands‐material composition,
provenance, mechanism of formation and
evolutionin
relationwithsealevelchangesand
neotectonics, Proceedings of The first scientific
conference, Hanoi UniversityofScience,1998(in
Vietnamese).
[7] Tran Nghi et al., Environment and mechanism
of red sand formation in Phan Thiet Province,
JournalofGeology245A(1998)31(inVietnamese).
[8] TranNghi,MaiThanhTan,
DoanDinhLam,La
The Phuc, Dinh Xuan Thanh, Nguyen Dinh
Nguyen,Characterist icsofPliocene‐Quaternary
lithofacies‐paleogeographyinshelfof Vietnam,
Journal of Sciences of the Earth, 23 (2001) 35 (in
Vietnamese).
[9] Tran Nghi, Mai Thanh Tan, Dinh Xuan Thanh,
Nguyen Thanh Lan, The sea level change
problem
in Quaternary based on sedimentary
research in littoral and shallow sea from Nha
Trang to Bac Lieu, Proceedings of Scientific
conference Geotechnics and Marine Geology, Da
Lat,2003(inVietnamese).
[10] Tran Nghi, Textbook on sedimentology, VNU
PublishingHouse,Hanoi,2003(inVietnamese).
[11] Tran Nghi, Textbook on marine geology,
VNU
PublishingHouse,Hanoi,2005(inVietnamese).