Tải bản đầy đủ (.pdf) (39 trang)

Khóa luận xác định nguyên tử số hiệu dụng của một số loại polyme

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.18 MB, 39 trang )

LỜI CẢM ƠN
Trong q trình thực hiện khóa luận, em xin chân thành cảm ơn thầy Hoàng Đức
Tâm. Thầy đã luôn hướng dẫn và truyền đạt nhiều kiến thức cho tơi trong q trình thực
hiện. Thầy khơng chỉ truyền đạt những kiến thức khoa học mà còn truyền đạt nhiều giá
trị nhân văn giúp em có thêm tri thức trên con đường tương lai.
Tôi xin gửi lời cảm ơn đến quý thầy cô Khoa Vật lý và trường Đại học Sư phạm đã
hỗ trợ tơi trong q trình học tập và rèn luyện. Đồng thời, tôi xin cảm ơn các bạn lớp Vật
lý Cử nhân A K42 đã đồng hành cùng tôi và giúp đỡ trong những năm học qua.
Cuối cùng, tôi xin gửi lời cảm ơn sâu sắc nhất đến ba mẹ và các thành viên trong gia
đình đã ln ủng hộ và giúp đỡ tơi để tơi có thể tập trung hồn thành khóa luận.

i


DANH MỤC CÁC TỪ VIẾT TẮT

Chữ viết tắt
MCNP6

Tiếng Việt

Tiếng Anh

Chương trình mơ phỏng Monte

Monte Carlo N – Particle 6

Carlo 6
Zeff

Ngun tử số hiệu dụng



Effective atomic number

RD

Độ lệch tương đối

Relative Deviation

CTHH

Cấu tạo hóa học

Chemical formula

ii


DANH MỤC HÌNH VẼ - ĐỒ THỊ
Hình 1.1. Hiệu ứng quang điện ........................................................................................ 3
Hình 1.2. Hiệu ứng Compton và sơ đồ tán xạ của bức xạ gamma lên electron tự do ..... 4
Hình 1.3. Hiệu ứng tạo cặp và hiệu ứng hủy cặp ............................................................. 5
Hình 2.1. Cấu trúc thẻ khai báo ơ mạng trong tập tin đầu vào ...................................... 15
Hình 2.2. Cấu trúc thẻ khai báo mặt trong tập tin đầu vào ............................................ 16
Hình 2.3. Cấu trúc thẻ khai bao nguồn trong tập tin đầu vào ........................................ 18
Hình 2.4. Cấu trúc thẻ khai báo vật liệu trong tập tin đầu vào ...................................... 19
Hình 3.1. Sơ đồ mơ hình thực nghiệm gamma truyền qua ............................................ 20
Hình 3.2. Mơ hình mơ phỏng gamma truyền qua trong chương trình MCNP6............. 20
Hình 3.3. Thơng số của nguồn phóng xạ ....................................................................... 21
Hình 3.4. Phổ năng lượng trước và sau khi xử lý bằng phần mềm Colegram ............... 24

Hình 3.5. Đồ thị so sánh giữa hai phương pháp ............................................................. 27
Hình 3.6. So sánh độ chênh lệch của nguyên tử số hiệu dụng giữa phương pháp tính
trực tiếp với các nghiên cứu khác .................................................................................. 28
Hình 3.7. So sánh độ chênh lệch của nguyên tử số hiệu dụng giữa phương pháp Monte
Carlo với các nghiên cứu khác ....................................................................................... 29

iii


DANH MỤC BẢNG BIỂU
Bảng 2.1. Cấu trúc tập tin đầu vào của chương trình MCNP6 ...................................... 13
Bảng 2.2. Một số mặt được nghĩa trong MCNP6 .......................................................... 16
Bảng 2.3. Các định nghĩa thông số trong MCNP6......................................................... 17
Bảng 3.1. Tên gọi, cấu trúc hóa học và mật độ của một số vật liệu polyme ................. 22
Bảng 3.2. Cấu hình và thơng số kỹ thuật của đầu dò NaI(Tl)........................................ 23
Bảng 3.3. Dữ liệu tính tốn hệ số suy giảm khối của vật liệu........................................ 24
Bảng 3.4. Bảng so sánh nguyên tử số hiệu dụng giữa hai phương pháp ....................... 26
Bảng 3.5. Bảng so sánh nguyên tử số hiệu dụng với các nghiên cứu khác ................... 27

iv


MỤC LỤC
LỜI CẢM ƠN ...................................................................................................................i
DANH MỤC CÁC TỪ VIẾT TẮT .................................................................................ii
DANH MỤC HÌNH VẼ - ĐỒ THỊ ................................................................................ iii
DANH MỤC BẢNG BIỂU ............................................................................................iv
MỞ ĐẦU .......................................................................................................................... 1
CHƯƠNG 1. TỔNG QUAN VỀ NGUYÊN TỬ SỐ HIỆU DỤNG................................ 3
1.1. Tương tác bức xạ gamma với vật chất ...................................................................... 3

1.1.1. Hiệu ứng quang điện .............................................................................................. 3
1.1.2. Hiệu ứng Compton ................................................................................................. 4
1.1.3. Hiệu ứng tạo cặp .................................................................................................... 5
1.2. Cơ sở lý thuyết .......................................................................................................... 6
1.2.1. Xác định hệ số suy giảm khối ................................................................................ 6
1.2.2. Xác định nguyên tử số hiệu dụng ........................................................................... 8
1.3. Phương pháp xác định nguyên tử số hiệu dụng ........................................................ 9
1.3.1. Phương pháp tính trực tiếp ..................................................................................... 9
1.3.2. Phương pháp Monte Carlo ..................................................................................... 9
1.4. Tóm tắt chương 1 .................................................................................................... 11
CHƯƠNG 2. PHƯƠNG PHÁP MONTE CARLO VÀ CHƯƠNG TRÌNH MCNP6 ... 12
2.1. Phương pháp Monte Carlo ...................................................................................... 12
2.2. Chương trình MCNP6 ............................................................................................. 12
2.3. Cấu trúc tập tin đầu vào .......................................................................................... 13
v


2.3.1. Thẻ khai báo ô mạng (Cell Cards) ....................................................................... 14
2.3.2. Thẻ khai báo mặt (Surface Cards) ........................................................................ 15
2.3.3. Thẻ khai báo dữ liệu (Data Cards) ....................................................................... 17
2.4. Tóm tắt chương 2 .................................................................................................... 19
CHƯƠNG 3. XÁC ĐỊNH NGUYÊN TỬ SỐ HIỆU DỤNG ........................................ 20
3.1. Mơ hình mơ phỏng .................................................................................................. 20
3.1.1. Mơ hình mơ phỏng ............................................................................................... 20
3.1.2. Phương pháp xử lý phổ ........................................................................................ 23
3.2. Kết quả và nhận xét ................................................................................................. 24
3.2.1. Xác định hệ số suy giảm khối .............................................................................. 24
3.2.2. Xác định nguyên tử số hiệu dụng ......................................................................... 25
3.3. Tóm tắt chương 3 .................................................................................................... 29
KẾT LUẬN .................................................................................................................... 30

TÀI LIỆU THAM KHẢO .............................................................................................. 31

vi


MỞ ĐẦU
Kiểm tra và đánh giá vật liệu là một trong những vấn đề cần thiết đối với các ngành
trong lĩnh vực khoa học. Hiện nay, một trong những phương pháp kiểm tra được sử dụng
rộng rãi là phương pháp kiểm tra không phá hủy. Phương pháp này dùng để phát hiện
khuyết tật của vật liệu mà không làm ảnh hưởng khả năng sử dụng của vật liệu sau này.
Trong đó, phương pháp chụp ảnh phóng xạ là phương pháp sử dụng tia bức xạ chiếu qua
vật liệu cần kiểm tra và dựa vào sự suy giảm của tia bức xạ khi xuyên qua chiều dày vật
liệu để đánh giá kết cấu vật liệu.
Để đánh giá khả năng che chắn của vật liệu, các nhà khoa học nghiên cứu về các
thông số ảnh hưởng đến sự tương tác giữa các photon với vật liệu, trong đó bao gồm
nguyên tử số hiệu dụng. Hiện nay, có nhiều phương pháp được sử dụng để xác định
nguyên tử số hiệu dụng như phương pháp gamma tán xạ [1-2], gamma truyền qua [34],… Kucuk và cộng sự [4] đã xác định nguyên tử số hiệu dụng, mật độ electron hiệu
dụng cho 5 vật liệu polyme. Trong nghiên cứu, Kucuk sử dụng hệ đo gamma truyền qua
với đầu dò NaI(Tl) tại nhiều mức năng lượng để tiến hành thực nghiệm. Đồng thời, tính
tốn các thơng số trên bằng lý thuyết để so sánh kết quả với thực nghiệm. Kết qua thu
được là giá trị thực nghiệm phù hợp với giá trị lý thuyết.
Với độ phù hợp cao giữa giá trị lý thuyết với giá trị thực nghiệm trong nghiên cứu
trên, chúng tôi sử dụng một số phương pháp để xác định nguyên tử số hiệu dụng của hợp
chất. Đối tượng được chọn để khảo sát là một số vật liệu polyme (14 loại) vì đây là một
loại vật liệu hợp chất mang tính ứng dụng cao trong đời sống. Bên cạnh đó, chúng tơi sử
dụng phương pháp Monte Carlo cùng phần mềm mô phỏng MCNP6 để mơ phỏng mơ
hình gamma truyền qua với năng lượng xác định của nguồn 137Cs (0,662 MeV). Từ kết
quả thu được, so sánh giá trị lý thuyết và giá trị mô phỏng với giá trị thực nghiệm từ một
số nghiên cứu khác. Từ đó, đánh giá sự phù hợp của phương pháp lý thuyết và mơ hình
mơ phỏng được xây dựng trong khóa luận.


1


Ngoài ra, trong nghiên cứu trước đây của Chương và cộng sự [5], Chương sử dụng
tỉ lệ của diện tích đỉnh tán xạ đơn của chất lỏng so với nước để xác định mật độ của môt
số loại chất lỏng. Phương pháp này bỏ qua sự ảnh hưởng của thành phần vật liệu và coi
như mật độ chỉ phụ thuộc vào năng lượng. Sự ảnh hưởng của thành phần vật liệu vào
mật độ cần được đánh giá lại để hoàn thiện dữ liệu. Chúng tôi muốn khảo sát sự ảnh
hưởng của nguyên tử số hiệu dụng của vật liệu vào việc dự đoán mật độ vật liệu. Phương
pháp xác định ngun tử số hiệu dụng và mơ hình mơ phỏng trong khóa luận này sẽ là
tiền đề để chúng tơi tiến hành khảo sát trên.
Nội dung khóa luận được chia thành ba chương:
Chương 1 trình bày những tương tác của bức xạ gamma với vật chất, cơ sở lý thuyết
và một số phương pháp để xác định nguyên tử số hiệu dụng.
Chương 2 giới thiệu về phương pháp Monte Carlo và chương trình MCNP6.
Chương 3 trình bày mơ hình mơ phỏng của mơ hình gamma truyền qua, đồng thời,
trình bày và so sánh các kết quả thu được từ các phương pháp.

2


CHƯƠNG 1. TỔNG QUAN VỀ NGUYÊN TỬ SỐ HIỆU DỤNG
1.1. Tương tác bức xạ gamma với vật chất
Bức xạ gamma được tạo ra từ quá trình phân rã của các đồng vị phóng xạ và từ sự
tương tác giữa các hạt cơ bản. Bản chất của bức xạ gamma là sóng điện từ mang năng
lượng cao. Khi đi qua vật chất, bức xạ gamma không gây ra hiện tượng ion hóa trực tiếp
như các hạt mang điện mà thường xảy ra ba hiệu ứng: hiệu ứng quang điện, hiệu ứng
Compton và hiệu ứng tạo cặp.
1.1.1. Hiệu ứng quang điện

Hiệu ứng quang điện xảy ra khi bức xạ gamma va chạm với electron quỹ đạo của
nguyên tử và truyền toàn bộ năng lượng cho electron đó khiến electron thốt ra khỏi
ngun tử. Electron đó được gọi là quang electron. Quang electron được cung cấp động
năng cực đại Ee bằng hiệu của năng lượng bức xạ gamma tới E với năng lượng liên kết
của electron với hạt nhân Elk [6]:

E e = E − E lk

(1.1)

Hình 1.1. Hiệu ứng quang điện
Hiệu ứng quang điện chỉ xảy ra khi năng lượng bức xạ gamma tới phải lớn hơn năng
lượng liên kết của electron với hạt nhân, trong đó, năng lượng liên kết của electron giảm

3


dần theo các lớp K, L, M,… Ngoài ra, hiệu ứng quang điện không xảy ra đối với các
electron tự do vì vi phạm định luật bảo tồn năng lượng và động lượng.
1.1.2. Hiệu ứng Compton
Hiệu ứng Compton là hiện tượng khi bức xạ gamma va chạm với electron lớp ngoài
của nguyên tử, truyền một phần năng lượng khiến electron bật ra khỏi nguyên tử còn bức
xạ gamma bị giảm năng lượng và thay đổi phương bay. Hiện tượng chỉ xảy ra khi năng
lượng bức xạ gamma tới mang giá trị lớn hơn nhiều so với năng lượng liên kết của các
electron lớp K trong nguyên tử. Khi đó có thể bỏ qua năng lượng liên kết của electron
và tán xạ của bức xạ gamma lên electron có thể coi như là tán xạ với electron tự do.

Hình 1.2. Hiệu ứng Compton và sơ đồ tán xạ của bức xạ gamma lên electron tự do
Theo định luật bảo toàn năng lượng và động lượng, thu được công thức năng lượng
gamma sau tán xạ và năng lượng electron sau tán xạ phụ thuộc vào góc bay của gamma

sau tán xạ:
• Năng lượng gamma sau tán xạ [6]:

E' =

E
E
1+
(1 − cos  )
m ec 2
4

(1.2)


• Năng lượng electron sau tán xạ [6]:

 E

E
1

cos

(
)

m ec2



Ee = E − E ' =
E
1+
(1 − cos  )
m ec 2

(1.3)

trong đó:
• E là năng lượng gamma trước tán xạ.
• E’ là năng lượng gamma sau tán xạ.
• Ee là năng lượng electron sau tán xạ.
• θ là góc bay của gamma sau tán xạ.
1.1.3. Hiệu ứng tạo cặp
Hiệu ứng tạo cặp là hiện tượng bức xạ gamma mang năng lượng lớn hơn hoặc bằng

(

)

hai lần năng lượng nghỉ của electron E   2m ec 2 đi qua điện trường của hạt nhân và
sinh ra một cặp electron-positron.

Hình 1.3. Hiệu ứng tạo cặp và hiệu ứng hủy cặp

5


Theo định luật bảo toàn năng lượng:


E e+ + E e− = E  − 2mec 2 = E  − 1,022 ( MeV )

(1.4)

Electron sau khi xuất hiện sẽ mất dần năng lượng để ion hóa các nguyên tử trong
mơi trường. Cịn positron mang điện tích dương nên tương tác với electron của nguyên
tử khác và hủy lẫn nhau, đây gọi là hiện tượng hủy cặp. Khi hiện tượng hủy cặp xảy ra,
sinh ra hai bức xạ mang năng lượng 0,511 MeV ngược chiều nhau.
1.2. Cơ sở lý thuyết
Nguyên tử số (Z) của một nguyên tố là số proton trong hạt nhân của mỗi nguyên tử,
tương tự như số điện tích của một nguyên tử. Với nguyên tử trung hòa về điện, số proton
trong hạt nhân bằng với số electron ở các lớp vỏ hạt nhân và chúng liên kết với nhau
bằng tương tác tĩnh điện. Đối với hợp chất, nguyên tử số hiệu dụng (Zeff) được xác định
phức tạp hơn so với nguyên tử số của một nguyên tố.
Nguyên tử số hiệu dụng (Zeff) của hợp chất là một thông số vật lý đặc trưng cho sự
tương tác giữa các photon với vật liệu. Thông số này được sử dụng nhiều trong việc đánh
giá che chắn bức xạ của vật liệu [7-8], phân biệt các mô tế bào [9], chụp ảnh phóng xạ
mẫu vật cổ [10]… Với tính ứng dụng cao nên nguyên tử số hiệu dụng rất được quan tâm
và nhiều phương pháp được phát triển để tính tốn thơng số này. Khóa luận này sẽ trình
bày một số phương pháp tính nguyên tử số hiệu dụng.
1.2.1. Xác định hệ số suy giảm khối
Khi chiếu một chùm tia gamma hẹp đơn năng vào bia vật liệu thì cường độ chùm tia
thay đổi khi đi qua bề dày dx của bia như sau [6]:

dI = −Idx

(1.5)

dI
= −dx

I

(1.6)

Công thức (1.5) được viết lại:

6


Lấy tích phân từ 0 đến x thì thu được công thức biểu thị sự thay đổi cường độ của
bức xạ gamma theo quy luật hàm mũ khi bề dày vật liệu thay đổi [6]:

I = I0e −x = I0e −mx

(1.7)

trong đó:
• I0 là cường độ bức xạ gamma trước khi qua vật liệu.
• I là cường độ bức xạ gamma sau khi qua vật liệu.
• x (cm) là bề dy vt liu.
ã à (cm-1) l h s suy gim tuyn tớnh.
ã

àm =


(g.cm-2) l h s suy gim khi ca vật liệu với ρ (g.cm-3) là mật độ của


vật liệu.

Để tính nguyên tử số hiệu dụng cần xác định hệ số suy giảm khối của vật liệu ứng
với mức năng lượng 0,662 MeV. Dựa vào công thức thay đổi cường độ của bức xạ
gamma theo quy luật hàm mũ khi đi qua bề dày vật liệu (1.7), hệ số suy giảm khối của
vật liệu được tính như sau [4]:

m =

 1  I0 
=
ln  
 x  I 

(1.8)

trong đó, mật độ vật liệu ρ được tra cứu trên dữ liệu WinXCom [11].
Ngồi dựa vào cơng thức suy giảm cường độ bức xạ khi qua vật liệu, hệ số suy giảm
khối của vật liệu được tính bằng hệ số suy giảm khối của từng nguyên tố trong hợp chất
[12]:



=  wi  

i
  i

7

(1.9)



trong đó, w i =

n i Ai
là tỉ số khối lượng của nguyên tố thứ i trong hợp chất với điều
 n jA j
j

kiện

w

i


 được tra cứu
  i

= 1 . Tỉ số này và hệ số suy giảm khối của từng nguyên tố 

i

trên dữ liệu WinXCom ứng với năng lượng 0,662 MeV [10].
1.2.2. Xác định nguyên tử số hiệu dụng
Nguyên tử số hiệu dụng được tính bằng tỉ số giữa tiết diện tương tác phân tử hiệu
dụng với tiết diện electron hiệu dụng [12]:

Zeff , =

a

el

(1.10)

Trong đó, tiết diện tương tác phân tử toàn phần σm, tiết diện tương tác nguyên tử
hiệu dụng σa và tiết diện tương tác electron hiệu dụng σel được tính bằng các cơng thức
sau [12]:

m =

a =

1 
   n i Ai
NA    i

m
1
=
 ni NA



f A   
i

i

i


 i

(1.11)

(1.12)

i

el =

1
f i Ai   

N A i Zi   i

trong đó:
• Ai là khối lượng ngun tử của nguyên tố thứ i trong hợp chất.
• ni là số nguyên tử của nguyên tố thứ i trong hợp chất.



là hệ số suy giảm khối của vật liệu.

8

(1.13)






   là hệ số suy giảm khối của nguyên tố thứ i trong hợp chất.
 i



fi =

ni
là tỉ lệ số nguyên tử của nguyên tố thứ i trong hợp chất.
 ni
i

1.3. Phương pháp xác định nguyên tử số hiệu dụng
1.3.1. Phương pháp tính trực tiếp
Phương pháp tính trực tiếp dựa trên cơng thức (1.10), trong đó ngun tử số hiệu
dụng phụ thuộc vào hệ số suy giảm khối của từng nguyên tố trong hợp chất. Phương
pháp tính trực tiếp có dạng cơng thức nhau sau [13]:


 f A   
i

Zeff ,PI =

i

i

i


f A 
j Zj j   
j
j

(1.14)

trong đó, hệ số suy giảm khối của từng nguyên tố được tra cứu trên dữ liệu WinXCom
ứng với năng lượng 0,662 MeV [11].
1.3.2. Phương pháp Monte Carlo
Trong khóa luận này, chúng tơi sử dụng mơ hình gamma truyền qua để xác định
ngun tử số hiệu dụng. Mơ hình được mơ phỏng bằng chương trình MCNP6 dựa trên
phương pháp Monte Carlo. Cơ sở lý thuyết của phương pháp Monte Carlo được trình
bày ở chương 2 và mơ hình mơ phỏng được trình bày ở chương 3.
Sau q trình mơ phỏng và xử lý phổ, chúng tôi thu được cường độ bức xạ gamma
khi qua vật liệu khảo sát và qua vật liệu khơng khí. Cường độ bức xạ gamma khi qua vật
liệu khơng khí đóng vai trị là cường độ bức xạ gamma trước khi qua vật liệu. Dữ liệu
mơ phỏng áp dụng vào tính hệ số suy giảm khối của vật liệu bằng cơng thức (1.8) và tính
ngun tử số hiệu dụng bằng công thức (1.10).

9


1.3.3. Phương pháp XMuDat
XMuDat là một chương trình máy tính được dùng để tính hệ số suy giảm khối cho
các đơn chất, hợp chất và hỗn hợp. Nowotny đã áp dụng công thức (1.15) để xác định
nguyên tử số hiệu dụng trong chương trình [14]:

(


Zeff =  i Zim−1

)

1/ ( m −1)

(1.15)

i

trong đó,  i =

n i Zi
là tỉ lệ của số electron của nguyên tố thứ i trong hợp chất và m
 n i Zi
i

mang giá trị 3  m  5 .
1.3.4. Phương pháp nội suy
Tiết diện hấp thụ của vật liệu được tính bằng cơng thức [15]:

=

m
N ( w i / Ai )

(1.16)

i


trong đó, N là số Avogadro, w i =

n i Ai
là tỉ số khối lượng của nguyên tố thứ i trong
 n i Ai
i

hợp chất.
Nguyên tử số tương đương sử dụng công thức nội suy hàm logarit [15]:

Zeq =

Z1 ( log 2 − log  ) − Z2 ( log  − log 1 )
log  2 − log 1

(1.17)

trong đó:
• σ1 và σ2 là tiết diện hấp thụ của từng nguyên tố tương ứng với nguyên tử số Z1 và
Z2 .
• σ là tiết diện tương tác điện tử của vật liệu có giá trị nằm giữa σ1 và σ2.

10


Trong khóa luận, chúng tơi sử dụng phương pháp tính trực tiếp và phương pháp
Monte Carlo để xác định nguyên tử số hiệu dụng.
1.4. Tóm tắt chương 1
Chương 1 đã trình bày về các tương tác giữa bức xạ gamma với vật chất, phương

pháp xác định hệ số suy giảm khối và các phương pháp xác định nguyên tử số hiệu dụng.
Các vấn đề trên là cơ sở lý thuyết giúp chúng tôi đánh giá sự phù hợp của các phương
pháp xác định nguyên tử số hiệu dụng.

11


CHƯƠNG 2. PHƯƠNG PHÁP MONTE CARLO VÀ CHƯƠNG TRÌNH MCNP6
2.1. Phương pháp Monte Carlo
Phương pháp Monte Carlo là phương pháp giải quyết các bài tốn mang tính thống
kê mà khơng thể xử lý một cách chính xác bằng giải tích toán học. Phương pháp này dựa
vào việc gieo số ngẫu nhiên để phân tích kết quả dưới sự tác động đồng thời của nhiều
yếu tố.
Việc gieo số ngẫu nhiên để giải các bài toán phức tạp đã được xuất hiện từ rất lâu về
trước. Vào năm 1777, nhà toán học người Pháp Georges-Louis Leclerc, Comte de Buffon
đã đưa ra ý tưởng về việc gieo số ngẫu nhiên trong bài toán cây kim của Buffon. Bài
tốn của Buffon là thí nghiệm thả một cây kim xuống mặt phẳng có các đường song song.
Từ đó dựa trên đếm số giao điểm của cây kim rơi với các đường thẳng đã tính được gần
đúng số π. Vào năm 1899, nhà vật lý người Anh Lord Rayleigh đã chỉ ra rằng một bước
đi ngẫu nhiên một chiều khơng có vật hấp thụ có thể cung cấp một lời giải xấp xỉ cho
một phương trình vi phân parabolic. Từ những kết quả trên cho thấy việc giải toán bằng
phương pháp sử dụng yếu tố ngẫu nhiên mang lại hiệu quả rất cao.
Với tiềm năng này, nhóm nghiên cứu Los Alamos đã phát triển phương pháp Monte
Carlo. Phương pháp được nhóm nghiên cứu đặt theo tên của thành phố ở Monaco, nơi
nổi tiếng với các sòng bạc.
Trong ngành Vật lý hạt nhân, phương pháp Monte Carlo đóng vai trị quan trọng, là
cơng cụ hỗ trợ việc quan sát sự tương tác của bức xạ với vật chất và thu các kết quả mang
tính thống kê phục vụ cho việc nghiên cứu. Trong khóa luận này, chúng tơi sử dụng phần
mềm mơ phỏng MCNP6.
2.2. Chương trình MCNP6

MCNP (Monte Carlo N-Particle) là chương trình mơ phỏng vận chuyển hạt bằng
phương pháp Monte Carlo được xây dưng bởi nhóm nghiên cứu tại phịng thí nghiệm

12


quốc gia Los Alamos. Tiền thân của nó là chương trình MCS được xây dựng từ năm
1963 và ln được cải thiện, phát triển để nâng cao chức năng của chương trình.
MCNP6 là một trong những phiên bản của chương trình MCNP được cơng bố vào
năm 2013. Cũng như chương trình MCNP, MCNP6 sử dụng các thư viện số liệu hạt
nhân và nguyên tử năng lượng liên tục như ENDF (The Evaluated Nuclear Data File),
ENDL (The Evaluated Nuclear Data Library), ACTL (The Activation Library)… Đây là
phiên bản hợp nhất của MCNP và MCNPX nên MCNP6 có ưu điểm vượt trội là có thể
mơ phỏng được 37 loại hạt bao gồm: các hạt cơ bản (elementary particles), các hạt tổng
hợp (composite particles) hay hardron và các hạt nhân (nuclei).
Chương trình MCNP6 làm việc theo quy tắc gieo số ngẫu nhiên, sử dụng các quy
luật thống kê và khả năng mô tả hình học ba chiều nên mang lại ưu thế rất lớn về mặt
chi phí khoa học. Với ưu thế lớn như vậy, MCNP6 được sử dụng rộng rãi trong ngành
Kỹ thuật hạt nhân.
2.3. Cấu trúc tập tin đầu vào
Để xây dựng mơ hình mơ phỏng bằng MCNP6, tập tin đầu vào của MCNP6 gồm có
ba thẻ chính tương ứng với ba phần dữ liệu:
• Thẻ định nghĩa ơ mạng (Cell Cards)
• Thẻ định nghĩa mặt (Surface Cards)
• Thẻ định nghĩa nguồn (Data Cards)
Tập tin đầu vào của chương trình MCNP6 có cấu trúc như sau:
Bảng 2.1. Cấu trúc tập tin đầu vào của chương trình MCNP6
Tiêu đề và thơng tin chung về nguồn, đầu dò, vật liệu (Title Cards)
Định nghĩa ô mạng (Cell Cards)



13


Bảng 2.1. Cấu trúc tập tin đầu vào của chương trình MCNP6 (tiếp theo)
Dịng trống
Định nghĩa mặt (Surface Cards)

Dịng trống
Định nghĩa nguồn (Data Cards)

Một số lưu ý khi tạo một tập tin đầu vào:
• Khơng được dùng phím tab để tạo khoảng trắng trong khi viết mà chỉ được sử
dụng phím spacebar.
• Số kí tự tối đa cho mỗi dịng là 80 kí tự, nếu vượt q thì phải xuống dịng và
dung kí tự ’&’ ở cuối dịng để báo cho chương trình biết là thơng tin vẫn cịn tiếp
tục ở dịng dưới hoặc để trống 5 kí tự đầu tiên ở dịng tiếp theo.
• Kí tự ‘C’ được đặt ở đầu dịng và kí tự ‘$’ được đặt ở giữa dịng có tác dụng ghi
chú một số thơng tin cần lưu ý, MCNP sẽ khơng thực hiện các dịng ghi chú này
trong khi chạy mơ phỏng.
• Một số đơn vị được mặc định trong MCNP là: năng lượng (MeV), khối lượng (g),
không gian (centimet), thời gian (shake = 10−8 s), nhiệt độ (MeV), mật độ nguyên
tử (nguyên tử/barn-cm), mật độ khối lượng (g/cm3), tiết diện (barn).
2.3.1. Thẻ khai báo ơ mạng (Cell Cards)
Ơ mạng (cell) trong chương trình MCNP được định nghĩa là một vùng khơng gian
được hình thành bởi các mặt biên (surface). Ô mạng được biểu diễn bởi số ô mạng (cell
number), số vật chất (material number), mật độ vật chất (material density), một dãy các

14



mặt (surfaces) có dấu (âm hoặc dương). Các thơng số kết hợp nhau thơng qua các tốn
tử giao (khoảng trắng), hội (:), bù (#) để tạo thành ô mạng.
Cú pháp khai báo ơ mạng:
j

m

d

geom

params

trong đó:
• j là chỉ số cell.
• m là chỉ số vật chất trong cell, m=0 là cell trống.
• d là khối lượng riêng của cell mang dấu ‘+’ theo nếu tính theo đơn vị nguyên
tử/cm3 hoặc mang dấu ‘-’ theo nếu tính theo đơn vị g/cm3.
• geom là phần mơ tả hình học của cell, được giới hạn bởi các mặt.
• param là các tham số tùy chọn.
Ví dụ về thẻ khai báo ơ mạng trong tập tin đầu vào của nghiên cứu này được mô tả
qua hình sau:

Hình 2.1. Cấu trúc thẻ khai báo ơ mạng trong tập tin đầu vào
2.3.2. Thẻ khai báo mặt (Surface Cards)
Để tạo ra các vùng khơng gian hình học, MCNP đưa ra một số các dạng mặt cơ bản
chẳng hạn như mặt phẳng, mặt cầu, mặt trụ,… (có tất cả gần 30 loại mặt cơ bản). Các
khối hình học mô phỏng được tạo thành bằng cách kết hợp các vùng không gian giữa
các mặt với nhau thông qua các toán tử giao, hội và bù.

15


Cú pháp khai báo mặt:
j

n

a

list

trong đó:
• j là chỉ số mặt.
• n là hệ số chuyển trục tọa độ.
• a là kí hiệu loại mặt.
• list là các tham số định nghĩa mặt.
Đối với mơ phỏng của khóa luận này, một số loại mặt cơ bản được sử dụng là mặt
phẳng và mặt trụ. Bảng 2.2 biểu diễn một số thơng số của các mặt được sử dụng trong
khóa luận:
Bảng 2.2. Một số mặt được nghĩa trong MCNP6
Kí hiệu

Mơ tả

Phương trình

Tham số

PX


Mặt phẳng ⊥ trục X

x−D =0

D

PY

Mặt phẳng ⊥ trục Y

y−D =0

D

PZ

Mặt phẳng ⊥ trục Z

z−D =0

D

CZ

Mặt trụ trên trục Z

x 2 + y2 − R 2 = 0

R


Ví dụ về thẻ khai báo mặt trong tập tin đầu vào của khóa luận được mơ tả qua hình sau:

Hình 2.2. Cấu trúc thẻ khai báo mặt trong tập tin đầu vào
16


2.3.3. Thẻ khai báo dữ liệu (Data Cards)
Thẻ khai báo dữ liệu (Data Cards) là một phần quan trọng trong một tập tin đầu vào.
Trong phần này, người dùng cần khai báo những thông tin về loại bức xạ, nguồn và vật
liệu cấu tạo những ô mạng.
2.3.3.1. Khai báo nguồn (Source Cards)
Chương trình MCNP6 cho phép khai báo nhiều loại nguồn sao cho phù hợp với bài
tốn cần mơ phỏng như: nguồn tổng quát (SDEF), nguồn điểm (KSRC), nguồn mặt
(SSR/SSW). Người dùng cần khai báo cụ thể các thông số nguồn như năng lượng, thời
gian, vị trí và hướng phát nguồn hay các thơng số hình học khác như ơ mạng hoặc mặt.
Cú pháp khai báo một nguồn tổng quát như sau:
SDEF

Thông số 1

Thông số 2

Thông số 3

Các định nghĩa về thông số được đưa ra trong bảng 2.3:
Bảng 2.3. Các định nghĩa thông số trong MCNP6
Thông số

Giá trị mặc định


Ý nghĩa

ERG

Năng lượng của nguồn

PAR

Loại hạt phát ra từ nguồn

POS

Tọa độ vị trí nguồn

AXS

Vector tham chiếu cho RAD và EXT

RAD

Bán kính quét từ POS hoặc từ AXS

0

EXT

Khoảng cách quét từ POS dọc theo AXS

0


CEL

Số hiệu cell của nguồn

VEC

Vector tham chiếu cho DIR

DIR

14 MeV
1:neutron, 2:photon,
3:electron
(0, 0, 0)

Cosin của góc hợp bởi vector tham chiếu
VEC và hướng bay của hạt
17

Nguồn phát đẳng hướng


Ngoài những giá trị mặc định trong phần khai báo nguồn tổng quát, chúng tôi sử
dụng thêm các thẻ như SIn, SPn, SBn, En, FTn, F8 trong mô phỏng của khóa luận. Trong
đó Tally F8 (F8) đóng vai trị như một đầu dò vật lý cho phép ghi nhận xung giúp cung
cấp thông tin về năng lượng bị mất trong một ơ mạng.
Ví dụ về thẻ khai báo nguồn trong tập tin đầu vào của khóa luận được mơ tả qua
hình sau:


Hình 2.3. Cấu trúc thẻ khai bao nguồn trong tập tin đầu vào
2.3.3.2. Thẻ khai báo vật liệu (Material Cards)
Thẻ khai báo vật liệu (Material Cards) là phần người dùng mô tả loại vật liệu được
lấp đầy trong ô mạng trong q trình mơ phỏng. Các thành phần trong vật liệu được xác
định bằng số hiệu nguyên tử của nguyên tố thành phần và tỉ lệ phần trăm của nguyên tố
đó trong vật chất.
Cú pháp khai báo vật liệu như sau:
Mm

ZAID1

fraction1

ZAID2

fraction2…

trong đó:
• m là chỉ số của vật liệu.
• ZAID là số hiệu xác định đồng vị có dạng ZZZAAA.nnX (với ZZZ là số hiệu
nguyên tử, AAA là số khối, nn là số chỉ của bộ số liệu tiết diện tương tác được sử
18


dụng, X là kiểu dữ liệu). Trong khi khai báo đồng vị, số hiệu nguyên tử ZZZ
không nhất thiết phải đủ ba chữ số và đối với đồng vị tự nhiên AAA=000.
• fraction là tỉ lệ đóng góp của đồng vị trong vật liệu. Tỉ lệ đóng góp của đồng vị
trong vật liệu mang giá trị dương khi được tính theo tỉ lệ số nguyên tử có trong
hợp chất, hoặc mang giá trị âm khi tính theo tỉ lệ khối lượng.
Ví dụ về thẻ khai báo vật liệu trong tập tin đầu vào của khóa luận được mơ tả qua

hình sau:

Hình 2.4. Cấu trúc thẻ khai báo vật liệu trong tập tin đầu vào
2.4. Tóm tắt chương 2
Chương 2 trình bày tổng quan về phương pháp Monte Carlo và chương trình MCNP6.
Đồng thời, chương này đã trình bày cấu trúc của một tập tin đầu vào của chương trình
MCNP6 với một số ví dụ từ tập tin đầu vào của khóa luận. Phương pháp Monte Carlo là
nền tảng chúng tơi tiến hành các mơ phỏng phục vụ cho khóa luận.

19


×