Tải bản đầy đủ (.doc) (4 trang)

ĐÁP ÁN VÀ ĐỀ THI THỬ ĐẠI HỌC - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 111 pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (146.87 KB, 4 trang )

SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK
TRƯỜNG THPT NGUYỄN HUỆ
ĐỀ THI THỬ ĐẠI HỌC
MÔN TOÁN NĂM 2012 - 2013
Thời gian làm bài: 180 phút.
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (2 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 1
1
x
y
x

=

2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng
2
.
Câu II (2 điểm)
1) Giải phương trình
2
17
sin(2 ) 16 2 3.sin cos 20sin ( )
2 2 12
x
x x x
π π
+ + = + +
2) Giải hệ phương trình :
4 3 2 2


3 2
1
1
x x y x y
x y x xy

− + =


− + = −


Câu III (1 điểm): Tính tích phân: I =
4
0
tan .ln(cos )
cos
x x
dx
x
π

Câu IV (1 điểm):
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại
đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60
0
. Tính cụsin của góc giữa hai mặt
phẳng (SAB) và (SBC) .
Câu V: (1 điểm) Cho a,b,c là các số dương thỏa măn a + b + c = 1. Chứng minh rằng:


3
a b b c c a
ab c bc a ca b
+ + +
+ + ≥
+ + +
PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương tŕnh Chuẩn
Câu VI.a (1 điểm)
Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng

: 2x + 3y + 4 = 0.
T́m tọa độ điểm B thuộc đường thẳng

sao cho đường thẳng AB và

hợp với nhau gúc 45
0
.
Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-1;1)
và hai đường thẳng
1
( ) :
1 2 3
x y z
d
+
= =
− −


1 4
( '):
1 2 5
x y z
d
− −
= =
Chứng minh: điểm M, (d), (d’) cùng nằm trên một mặt phẳng. Viết phương tŕnh mặt phẳng đó.
Câu VIII.a (1 điểm)
Giải phương tŕnh:
2 2
2
(24 1)
(24 1) (24 1)
log log
+
+ +
+ =
x
x x x x
log x x x

Theo chương trình Nâng cao
Câu VI.b (1 điểm)
Trong mặt phẳng tọa độ Oxy cho đường thỏa mãnṛ
2 2
( ): 1C x y+ =
, đường thẳng
( ) : 0d x y m+ + =
. T́ìm

m
để
( )C
cắt
( )d
tại A và B sao cho diện tích tam giác ABO lớn nhất.
Câu VII.b (1 điểm)
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng:
(P): 2x – y + z + 1 = 0, (Q): x – y + 2z + 3 = 0, (R): x + 2y – 3z + 1 = 0
và đường thẳng
1

:
2
2

−x
=
1
1+y
=
3
z
. Gọi
2

là giao tuyến của (P) và (Q).
Viết phương trình đường thẳng (d) vuông góc với (R) và cắt cả hai đường thẳng
1


,
2

.
Câu VIII.b (1 điểm) Giải bất phương trình: log
x
( log
3
( 9
x
– 72 ))

1
Hết
ĐÁP ÁN
Câu 1: 1, *Tập xác định :
{ }
\ 1D = ¡
*Tính
2
1
' 0
( 1)
y x D
x

= < ∀ ∈

Hàm số nghịch biến trên các khoảng
( ;1)−∞


(1; )+∞
*Hàm số không có cực trị
*Giới hạn
1x
Lim y
+

= +∞

1x
Lim y


= −∞

2
x
Lim y
→+∞
=

2
x
Lim y
→−∞
=
Đồ thị có tiệm cận đứng :x=1 , tiệm cận ngang y=2
*Bảng biến thiên
*Vẽ đồ thị

Câu 1: 2,*Tiếp tuyến của (C) tại điểm
0 0
( ; ( )) ( )M x f x C∈
có phương trình
0 0 0
'( )( ) ( )y f x x x f x= − +

Hay
2 2
0 0 0
( 1) 2 2 1 0x x y x x+ − − + − =
(*)
*Khoảng cách từ điểm I(1;2) đến tiếp tuyến (*) bằng
2

0
4
0
2 2
2
1 ( 1)
x
x

⇔ =
+ −

giải được nghiệm
0
0x =


0
2x =
Vậy: Các tiếp tuyến cần tìm :
1 0x y+ − =

5 0x y+ − =
Câu 2: 1, *Biến đổi phương trình đó cho tương đương với
os2 3 sin 2 10 os( ) 6 0
6
c x x c x
π
− + + + =

os(2 ) 5 os( ) 3 0
3 6
c x c x
π π
⇔ + + + + =
2
2 os ( ) 5 os( ) 2 0
6 6
c x c x
π π
⇔ + + + + =
.Giải được
1
os( )
6 2
c x

π
+ = −

os( ) 2
6
c x
π
+ = −
(loại)
*Giải
1
os( )
6 2
c x
π
+ = −
được nghiệm
2
2
x k
π
π
= +

5
2
6
x k
π
π

= − +
Câu 2: 2, *Biến đổi hệ tương đương với
2 2 3
3 2
( ) 1
( ) 1
x xy x y
x y x xy

− = −


− − = −


*Đặt ẩn phụ
2
3
x xy u
x y v

− =


=


, ta được hệ
2
1

1
u v
v u

= −

− = −

*Giải hệ trên được nghiệm (u;v) là : (1;0) và (-2;-3) *Từ
đó giải được nghiệm (x;y) là (1;0) và (-1;0)
Câu 3: *Đặt t=cosx Tính dt=-sinxdx , đổi cận x=0 thỡ t=1 ,
4
x
π
=
thì
1
2
t =
Từ đó
1
1
2
2 2
1
1
2
ln lnt t
I dt dt
t t

= − =
∫ ∫
*Đặt
2
1
ln ;u t d v dt
t
= =

1 1
;du dt v
t t
⇒ = = −
Suy ra
1
2
1
2
1 1
1 1 2 1
ln ln 2
1 1
2
2 2
I t dt
t t t
= − + = − −

*Kết quả
2

2 1 ln 2
2
I = − −

Câu 4: *Vẽ hình
*Gọi H là trung điểm BC , chứng minh
( )SH A B C⊥
*Xác định đúng góc giữa hai mặt phẳng (SAB) , (SAC) với mặt đáy là
0
60SEH SFH= =
*Kẻ
HK SB⊥
, lập luận suy ra góc giữa hai mặt phẳng (SAB) và (SBC) bằng
HK A
.
*Lập luận và tính được AC=AB=a ,
2
2
a
HA =
,
0
3
tan 60
2
a
SH HF= =
*Tam giác SHK vuông tại H có
2 2 2
1 1 1 3

10
K H a
HK H S HB
= + ⇒ =
*Tam giác AHK vuông tại H có
2
20
2
tan
3
3
10
a
A H
A K H
K H
a
= = =

3
cos
23
A K H⇒ =

Câu 5:*Biến đổi
1 1
1 (1 )(1 )
a b c c
ab c ab b a a b
+ − −

= =
+ + − − − −
*Từ đó
1 1 1
(1 )(1 ) (1 )(1 ) (1 )(1 )
c b a
V T
a b c a c b
− − −
= + +
− − − − − −
Do a,b,c dương và a+b+c=1 nên a,b,c thuộc khoảng (0;1) => 1-a,1-b,1-c dương
*áp dụng bất đẳng thức Côsi cho ba số dương ta được
3
1 1 1
3. . .
(1 )(1 ) (1 )(1 ) (1 )(1 )
c b a
V T
a b c a c b
− − −

− − − − − −
=3 (đpcm)
Đẳng thức xảy ra khi và chỉ khi
1
3
a b c= = =
Câu 6a: *


có phương trình tham số
1 3
2 2
x t
y t
= −


= − +

và có vtcp
( 3;2)u = −
ur
*A thuộc


(1 3 ; 2 2 )A t t⇒ − − +
*Ta có (AB;

)=45
0

1
os( ; )
2
c A B u⇔ =
uuuur ur

.
1

2
.
A B u
A B u
⇔ =
uuuur ur
ur

2
15 3
169 156 45 0
13 13
t t t t⇔ − − = ⇔ = ∨ = −
*Các điểm cần tìm là
1 2
32 4 22 32
( ; ), ( ; )
13 13 13 13
A A− −
Câu 7a: *(d) đi qua
1
(0; 1;0)M −
và có vtcp
1
(1; 2; 3)u = − −
uur
(d’) đi qua
2
(0;1;4)M
và có vtcp

2
(1;2;5)u =
uur
*Ta có
1 2
; ( 4; 8;4)u u O
 
= − − ≠
 
uur uur ur
,
1 2
(0;2;4)M M =
uuuuuuur
Xét
1 2 1 2
; . 16 14 0u u M M
 
= − + =
 
uur uur uuuuuuur
 (d) và (d’) đồng phẳng .
*Gọi (P) là mặt phẳng chứa (d) và (d’) => (P) cú vtpt
(1;2; 1)n = −
ur
và đi qua M
1
nên có phương trình
2 2 0x y z+ − + =
*Dễ thấy điểm M(1;-1;1) thuộc mf(P) , từ đó ta có đpcm

Câu 8a: *Điều kiện :x>0
*TH1 : xét x=1 là nghiệm
*TH2 : xét
1x ≠
, biến đổi phương trình tương đương với

1 2 1
1 2log (24 1) 2 log (24 1) log (24 1)
x x x
x x x
+ =
+ + + + +
Đặt
log ( 1)
x
x t+ =
, ta được phương trình :
1 2 1
1 2 2t t t
+ =
+ +
giải được t=1 và t=-2/3
*Với t=1
log ( 1) 1
x
x⇒ + =
phương trình này vô nghiệm
*Với t=-2/3
2
log ( 1)

3
x
x⇒ + = −

2 3
.(24 1) 1x x⇔ + =
(*)
Nhận thấy
1
8
x =
là nghiệm của (*) Nếu
1
8
x >
thì VT(*)>1
Nếu
1
8
x <
thì VT(*)<1 , vậy (*) có nghiệm duy nhất
1
8
x =
*Kết luận : Các nghiệm của phương trình đó cho là x=1 và
1
8
x =
Câu 6b:*(C) có tâm O(0;0) , bán kính R=1 *(d) cắt (C) tại hai điểm phân biệt
( ; ) 1d O d⇔ <

*Ta có
1 1 1
. .sin .sin
2 2 2
O A B
S O A O B A O B A O B= = ≤
Từ đó diện tích tam giác AOB lớn nhất khi và chỉ khi
0
90A O B =
1
( ; )
2
d I d⇔ =

1m
⇔ = ±
Câu 7b: *
1

có phương trình tham số
2 2
1
3
x t
y t
z t
= −


= − +



=

*
2

có phương trình tham số
2
5 3
x s
y s
z s
= +


= +


=

*Giả sử
1 2
;d A d B∩ ∆ = ∩∆ =

(2 2 ; 1 ;3 ) B(2+s;5+3s;s)A t t t⇒ − − +
*
( 2 ;3 6; 3 )A B s t s t s t= + − + −
uuuur
, mf(R) có vtpt

(1;2; 3)n = −
ur
*
( ) &d R A B n⊥ ⇔
uuuur ur
cùng phương
2 3 6 3
1 2 3
s t s t s t+ − + −
⇔ = =

23
24
t⇒ =
*d đi qua
1 1 23
( ; ; )
12 12 8
A
và có vtcp
(1;2; 3)n = −
ur
=> d có phương trình
23
1 1
8
12 12
1 2 3
z
x y


− −
= =

Câu 8b:*Điều kiện :
3
0
log (9 72) 0
9 72 0
x
x
x >


− >


− >

giải được
9
log 73x >

9
log 73x >
>1 nên bpt đó cho tương đương với
3
log (9 72)
x
x− ≤


9 72 3
x x
⇔ − ≤

3 8
3 9
x
x

≥ −







2x
⇔ ≤
*Kết luận tập nghiệm :
9
(log 72;2]T =

×