Tải bản đầy đủ (.pdf) (6 trang)

Đề trắc nghiệm toán 12 pdf (76)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.06 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 2. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a


C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 3. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.
C. 2.
D. 1.

x2 + 3x + 5
Câu 4. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.
D. 1.
4
4
Câu 5. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 6. !Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
.
B.
.
A.
3
3

!n
4
C.
.
e


!n
5
D. − .
3

x2 − 5x + 6
Câu 7. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.

C. 5.

D. −1.

Câu 8. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
1
C. lim = 0.
n
x+1
Câu 9. Tính lim
bằng
x→+∞ 4x + 3
1
1

A. .
B. .
3
4
1 − 2n
Câu 10. [1] Tính lim
bằng?
3n + 1
2
2
A. − .
B. .
3
3

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).

C. 3.

D. 1.

C. 1.

D.

1
.
3



Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vô số.
D. 63.


Câu 12. [12215d] Tìm m để phương trình 4 x+
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 4.2 x+

1−x2

C. m ≥ 0.

− 3m + 4 = 0 có nghiệm

9

D. 0 ≤ m ≤ .
4
Trang 1/5 Mã đề 1


Câu 13. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. [3; 4).
C.
;3 .
D. (1; 2).
2
2


ab.

1
Câu 14. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.

q
2
Câu 15. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 16. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 17. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
log 2x

Câu 18. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
.
C. y0 = 3

.
D. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
2x ln 10
x ln 10
2x3 ln 10
Câu 19. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. .
C. 9.
D. 6.
A. .
2
2
Câu 20. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 1.
C. Vơ số.
D. 3.
n−1
Câu 21. Tính lim 2
n +2

A. 0.
B. 3.
C. 1.
D. 2.
Câu 22. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.
2
5n − 3n
5n + n2

C. un =

n2 − 3n
.
n2
!

1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n
3

5
A. +∞.
B. .
C. .
2
2
2
3
7n − 2n + 1
Câu 24. Tính lim 3
3n + 2n2 + 1
7
A. .
B. 1.
C. 0.
3
Câu 25. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
1
.
B. .
C. √ .
A.
n
n
n

D. un =


n2 + n + 1
.
(n + 1)2

Câu 23. [3-1131d] Tính lim

D. 2.

2
D. - .
3
D.

n+1
.
n

Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 2/5 Mã đề 1



!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 27. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n

12 + 22 + · · · + n2
Câu 28. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3

C. 0.

D.

1

.
3

Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
Câu 30. Tính lim

B. 3.
1
1
1
+
+ ··· +
1.2 2.3
n(n + 1)

C. 2.

D. 0.

!

3
.
D. 1.
2
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
A. 0.

B. 2.

C.

Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2

a 2
A.
.
B.
.
C. a 3.
D. a 2.
3
2
Câu 33. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. .
B.
.
C. .
D. a.
3
2
2
d = 120◦ .
Câu 34. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.

D.
.
2
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
3
6
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. √
.

B. 2
.
C.
.
D.
.


a + b2
a2 + b2
a2 + b2
2 a2 + b2
Trang 3/5 Mã đề 1


[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.

D.
.
17
19
19
0 0 0 0
0
Câu 38.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3

Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √

bằng


3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 40. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
.
B.
.
C. .

D.
.
A.
9
9
9
9
Câu 41. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (III).

C. (II) và (III).


D. (I) và (II).

Câu 43. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 4/5 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.


D. Chỉ có (II) đúng.

Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 46. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 47.

Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

B.

xα+1
+ C, C là hằng số.
α+1

Z
D.

dx = x + C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 48. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.


B. 3.

C. 1.

D. 4.

Câu 49. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 50. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
- - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4. A

5.

B

6. A

7.
9.

8.

D

D


10. A

B

11. A

12. A

13.

C

14. A

15.

C

16.

D

18.

17. A
19.

B

C


20. A

B

21. A

22.

23.

D

24.

25.

D

26.

B
D
C

27.

C

28.


D

29.

C

30.

D

31.

C

32.

33.

D

34.

35.

D

36. A

37.

39.

C
B

41.

C

43. A
45.

D

38.

D

40.

D

42.

D

44.
B

B


B

46.

C

47.

C

48.

B

49.

C

50.

B

1



×