Tải bản đầy đủ (.pdf) (5 trang)

Đề thi ôn tập môn toán số 1 (182)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119.76 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

q
Câu 1. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 2. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
2

C. D = R \ {1; 2}.

D. D = [2; 1].

Câu 3. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).

1


B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

C. lim qn = 1 với |q| > 1.
Z 3
a
x
a
Câu 4. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị

d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.
D. P = 28.
Câu 5. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!

un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
x2 − 9
Câu 6. Tính lim
x→3 x − 3
A. 6.
5
Câu 7. Tính lim
n+3
A. 2.

B. 3.

C. +∞.

B. 0.

C. 1.

D. −3.

D. 3.


Câu 8. [2D1-3] Tìm giá trị của tham số m để hàm số y = x − mx + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
d = 120◦ .
Câu 9. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C.
.
D. 4a.
2
x−1 y z+1
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
3


Câu 11. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. 1.
C. .
2

2

D.

ln 2
.
2
Trang 1/4 Mã đề 1


Câu 12. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
B. V = 3S h.
C. V = S h.
A. V = S h.
2

1
D. V = S h.
3

Câu 13. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối lập phương.

D. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 14. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 15. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 8.

D. 20.

Câu 16. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
D. 2.
B. 2 13.

C.
A. 26.
13
x+3
Câu 17. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 18. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 19. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.

D. Hình tam giác.

Câu 20. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 10 năm.

B. 11 năm.
C. 12 năm.
D. 13 năm.
d = 300 .
Câu 21. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3
3

3a 3
a 3
.
B. V =
.
C. V = 3a3 3.
A. V =
D. V = 6a3 .
2
2
Z 1
6
2
3
Câu 22. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0

3x + 1
A. 2.

B. 4.

C. −1.

D. 6.
x+2
Câu 23. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
1
Câu 24. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 25. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.

C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Trang 2/4 Mã đề 1


Câu 26.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 27. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




3
3
3

a
a
a
2
3
3
A. 2a2 2.
.
C.
.
D.
.
B.
24
24
12
Câu 28. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 2; m = 1.
π
Câu 29. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu √
thức T = a + b 3.

B. T = 4.
C. T = 2.
D. T = 2 3.
A. T = 3 3 + 1.
x−2 x−1
x
x+1
Câu 30. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
!
1
1
1
Câu 31. [3-1131d] Tính lim +

+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
D. .
A. 2.
B. +∞.
C. .
2
2

Câu 32. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là



a3 3
a3
a3 3
3
C.
A.
.
B. a 3.
.
D.
.
4
3

12

Câu 33. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
un
Câu 34. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
3a
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .

B. .
C.
.
D.
.
4
3
3
3
1
Câu 36. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 37. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
2
3
7n − 2n + 1
Câu 38. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. .
C. - .

3
3

D. 27.

D. 0.
Trang 3/4 Mã đề 1


Câu 39. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.

D. Không tồn tại.

Câu 40. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
Câu 41. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24
1 + 2 + ··· + n
Câu 42. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Câu 43. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 44. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
B.
.
C.
.
D. a 3.
A. a 2.
3
2
2x + 1
Câu 45. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. .
D. −1.
2

1
Câu 46. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
8
24
24

48
3
2
Câu 48. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. 3 + 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
D. −3 − 4 2.
2

Câu 49. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

D. 7.

Câu 50. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.

n
5n − 3n2
5n + n2

n2 + n + 1
D. un =
.
(n + 1)2

n2 − 3n
C. un =
.
n2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.


C

4.

5.

B

6. A

7.

B

8.
C

9.

C

12.
D

17.
19.

18. A
D


20.

B

22.
D

23.

C

16.

C

25.

D

14. A

B

15.

21.

C

10. A


11. A
13.

B

C

C
B

24.

D

26.

D

27.

B

28.

29.

B

30.


C

32.

C

31. A
33.

B

35.
37.

B

34. A
D

B

39. A

36.

C

38.


C

40.

B

41.

B

42.

43.

B

44.

45.

B

46. A

47.

B

48.


B

50.

B

49.

D

1

D
C



×