Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (187)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (107.29 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1
4

Câu 1. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
2
5
A. a 3 .
B. a 3 .
C. a 3 .

√3
a2 bằng
5

D. a 8 .

Câu 2. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 3. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối


√ chóp S .ABCD là

3
3
3

6
a 5
a 15
a
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
log 2x

Câu 4. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.

B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 5. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.

Câu 6. [4] Xét hàm số f (t) =

Câu 7. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
3
6
2
Câu 8. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 9. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 8 3.
B.
.

C.
.
D. 6 3.
3
3
Z 2
ln(x + 1)
Câu 10. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 1.
C. 3.
D. −3.
Câu 11. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.

D. 13.

Câu 12. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

C. 12.

D. 20.


Câu 13. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 14. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D. m > −1.
Trang 1/4 Mã đề 1


Câu 15.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
Câu 16. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
ln x p 2
1

Câu 17. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
3
9
9
3
Câu 18. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 8.
C. 3 3.
D. 27.
Câu 19. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.

Câu 20. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
log2 a
loga 2
Câu 21. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 22. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].

D. [−1; 2).

Câu 23. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).

D. (1; +∞).


Câu 24. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 25. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 26. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

x2 + 3x + 5
Câu 27. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .

B. − .
4
4

C. 10 cạnh.

D. 9 cạnh.

C. 0.

D. 1.

d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √
3

3a 3
a 3
A. V =
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
2
2
Trang 2/4 Mã đề 1



Câu 29. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 31. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.


C. y0 = 1 − ln x.

D. y0 = x + ln x.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
B.
.
C.
.
D.
.
A. a 3.
6
3
3
Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .

C.
.
D.
.
A.
12
24
6
Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
Câu 35. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
B. (1; 2).
C.
;3 .
D. [3; 4).
A. 2; .
2
2


ab.


Câu 36. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 21.
D. 24.
Câu 37. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
x
2x + 1

C. y = x4 − 2x + 1.

D. y = x3 − 3x.

Câu 38. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
Câu 39. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.

(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 3.

D. 0.
Trang 3/4 Mã đề 1


1
Câu 40. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B


3.

D

4. A

5.

D

6.

7.

B

10.

D
B

C
D

14.
B

17.
19.


D

12.

13. A
15.

D

8. A

9.
11.

B

16. A
18.

C
B

20.

21. A

22. A

23. A


24. A

25. A

26.

C
B

C

27.

B

28. A

29.

B

30.

C

31.

B


32.

C

33. A

34.

35.

C

B

36. A

37.

B

38.

39.

B

40.

1


B
D



×