Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (376)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.72 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 13 năm.
D. 12 năm.
x−3
bằng?
Câu 2. [1] Tính lim
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
x+2
Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.


B. 3.
C. Vô số.
D. 1.
Câu 4. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C.
.
D. a.
3
2
2
Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 6. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.

D. 9.

Câu 7. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
18
9
15
Câu 8. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a

x→a

x→a

Câu 9. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).

B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b

Câu 10. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.

29
29
29
29
2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.

D. 2.
Trang 1/5 Mã đề 1


Câu 12. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.

C. 6.

D. 12.

Câu 13. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối


√ chóp S .ABCD là
3


a3 15
a3 5
a 6
3
A. a 6.
.
C.
.
D.
.
B.
3
3
3
Câu 14. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.


Câu 15. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

A. 3.
B. 2 3.
C. 2 + 3.
D. 3 2.
Câu 16. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.


C. Khối tứ diện đều.

D. Khối lập phương.

Câu 17. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3
Câu 18. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
.

B.
.
C.
.
D. a3 .
A.
3
2
6
Câu 19. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
6
24
12
!
3n + 2
2
Câu 20. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử

n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
x−2 x−1
x
x+1
Câu 21. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 22. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.




18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
21
3
9
9
Câu 23. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
Câu 24. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).
Trang 2/5 Mã đề 1



Câu 25. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n

C.

sin n
.
n

1
D. √ .
n

Câu 26. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − .
C. −e.
2e
e
5
Câu 28. Tính lim
n+3
A. 1.
B. 0.
C. 2.

D. −

1
.
e2


D. 3.

Câu 29. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 1587 m.
D. 27 m.
Câu 30. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1637
1079
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913

1 − n2
Câu 31. [1] Tính lim 2
bằng?
2n + 1
1
1
1
C. − .
D. .
A. 0.
B. .
2
2
3
Câu 32. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
3. Thể tích khối chóp S .ABCD



3
3

a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
Câu 33. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
C. 4.
D. 8.
Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
2n − 3
Câu 35. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.

C. 1.
D. 0.
3a
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3
3
3
Trang 3/5 Mã đề 1


Câu 37. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =

.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 38.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
4
5
1
5
.
B.
.
C. − .
D.
.
A.
3
e
3
3
Câu 39. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.

C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 40. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 12.
A. 27.
B.
2
Câu 41. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
1
Câu 42. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. 3.
C. .
D. −3.
3
3

Câu 43. Xác định phần ảo của số phức z = ( 2 + 3i)2 √


A. 7.
B. −7.
C. 6 2.
D. −6 2.
Câu 44. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 45. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

a 3
a3 3
a3 2
a3 3
.
B.
.
C.
.
D.
.
A.
4
12

6
12
Câu 46. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 47. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 48. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 49. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .

4
4
4
4
Câu 50. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
- - - - - - - - - - HẾT- - - - - - - - - Trang 4/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

4.

3. A
5.

D


6.

8.

D

9.

D
B
D

10.

C

11.

B

12.

C

13.

B

D


14.

17. A

16. A
18.

B
D

21.

D
D

22.

B

23.

24.

B

25. A
C

26.


27. A
29.

B

30.

D

33.

34.

B

35.

36.

B

37.

38.

D

39.


C
B
D
C
B

41.

C

42. A
44.

D

31.

C

32.

40.

C

19.

20.

28.


D

15.

D

43.
D

45.

46. A

47.

48. A

49.

50. A

1

C
B
D
B




×