Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (185)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.36 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 2. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
1
bằng
Câu 3. [1] Giá trị của biểu thức log √3
10
1
1
B. −3.
C. − .
D. 3.
A. .
3


3
Câu 4. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 13 năm.
D. 10 năm.
Câu 5. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 6. √
Thể tích của tứ diện đều cạnh
√ bằng a


3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.

D.
.
A.
2
12
6
4
Câu 7. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.

Câu 8. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −5.

x2 +2x

C. 3.

D. 1.

= 8 là
C. 5.

D. −6.


2−x

Câu 9. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.
D. 72.
!
!
!
x
1
2
2016
4
Câu 10. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.

2017
Câu 11. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 8%.
D. 0, 6%.
Trang 1/4 Mã đề 1


Câu 12. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 13. Tứ diện đều thuộc loại

A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 14. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 15. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
2

Câu 16. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. 3 .
e
e
2e

D.

1

√ .
2 e

Câu 17. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 12.
D. 8.
12 + 22 + · · · + n2
Câu 18. [3-1133d] Tính lim
n3
2
1
C. 0.
D. .
A. +∞.
B. .
3
3
2
4
3
Câu 19. Cho z là√nghiệm của phương trình x + x + 1 = 0. Tính P = z + 2z − z

−1 + i 3
−1 − i 3
.
B. P = 2i.
C. P = 2.
D. P =

.
A. P =
2
2
x+2
Câu 20. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 21. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 22. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
A. 8 3.
B.
.
C. 6 3.
D.
.
3
3
Câu 23. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.
D. Hai mặt.
Câu 24. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −3.

D. −5.

Câu 25. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.
Câu 26. [1] Biết log6
A. 6.


B. 2.


a = 2 thì log6 a bằng
B. 4.

C. +∞.

D. 1.

C. 36.

D. 108.
Trang 2/4 Mã đề 1


Câu 27. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là

3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Câu 29. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 30. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.


C. 12.

D. 30.

Câu 31.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3

!n
1
C.
.
3

!n
5
D.
.
3

Câu 32. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
2a 3
a 3
.
B.
.
C. a 3.
D.
.
A.
2
3
2
!
1
1
1
Câu 33. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
D. 0.
A. 1.
B. 2.
C. .
2


Câu 34. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
1 − n2
Câu 35. [1] Tính lim 2
bằng?
2n + 1
1
1
1

A. .
B. − .
C. 0.
D. .
3
2
2
Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 37. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.

C. 6 mặt.
Câu 38. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

C. 4.

D. 8 mặt.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 39. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 387 m.
D. 27 m.
Trang 3/4 Mã đề 1


Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 9 mặt.
B. 3 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 41. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.

6
12
24
36
Câu 42. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Bát diện đều.
C. Nhị thập diện đều. D. Thập nhị diện đều.
Câu 43. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 44. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim k = 0 với k > 1.
n
Câu 45. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
A. lim qn = 1 với |q| > 1.

Câu 46. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. [6, 5; +∞).

Câu 47. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 8 năm.
D. 9 năm.
Câu 48. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 49. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
B.
.
C. .
D.
.

A. .
5
10
5
10
Câu 50. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).
D. (−∞; −1).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C

4. A
D


5.
7.

C

6.

B

8.

B

9.

B

10.

11.

B

12.

13.

D


14.

15.

D

16. A

17.

18.

B

19.

C

B

D
C
D
B

20.

C
C


21.

B

22.

23.

B

24.

B

26.

B

25. A
27.

28.

B

29.

C

30.


31.

C

32.

33. A
35.
37.

C
B

34. A
B

36.

B

38.

C

39.

D

41.


42.

D

43. A

44. A
46.

D

C

48. A
50. A

1

D
B

45.

D

47.

D


49.

D



×