Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
ln x p 2
Câu 1. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) =
x
1
1
8
A. .
B. .
C. .
3
9
9
Câu 2. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
1
. Giá trị của F 2 (e) là:
3
8
D. .
3
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
Câu 3. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.
D. 1.
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
1 3
x − 2x2 + 3x − 1.
3
C. (1; 3).
D. (−∞; 1) và (3; +∞).
Câu 5. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; +∞).
B. (−∞; 3).
Câu 6. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
4
12
Câu 8. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
D. − < m < 0.
4
4
Câu 9. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].
D. (4; +∞).
Câu 10. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
D. 12.
C. 8.
Câu 11. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 12. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 13. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.
Trang 1/4 Mã đề 1
Câu 14. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
=
=
.
B.
=
=
.
A.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
log7 16
bằng
Câu 15. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. 4.
B. 2.
C. −2.
D. −4.
Câu 16. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
A.
.
B.
.
C. −
.
D. − .
25
100
100
16
√
√
4n2 + 1 − n + 2
bằng
Câu 17. Tính lim
2n − 3
3
A. 1.
B. 2.
C. .
D. +∞.
2
Câu 18. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a
x→a
x→a
0
0
0
0
Câu 19. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 20.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 21. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
A. .
B.
.
C.
.
D. .
5
10
10
5
x
Câu 22. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 ) = 2 − x bằng
A. 2.
B. 1.
C. 7.
D. 3.
3
x −1
Câu 23. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. 0.
D. +∞.
Câu 24. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 25. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Trang 2/4 Mã đề 1
Câu 26. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − .
A. − .
e
2e
1
Câu 28. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. −2.
x+1
Câu 29. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
6
2
Câu 30. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. 1.
D. −
1
.
e2
D. 1.
D.
1
.
3
D. |z| =
√4
5.
Câu 31. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 32. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R \ {0}.
D. D = R.
Câu 33. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim− f (x) = f (b).
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 1.
Câu 34. [1-c] Giá trị biểu thức
A. 4.
D. 3.
Câu 35. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 36. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 37. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 20.
D. 8.
Câu 39. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
Câu 40. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 6 mặt.
√
ab.
D. 8 mặt.
Trang 3/4 Mã đề 1
Câu 41. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 42. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (2; +∞).
D. (0; 2).
Câu 43. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 44. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
A.
3
3
3
Câu 45. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√
√ (A C D) bằng
√
√
a 3
2a 3
a 3
.
B. a 3.
.
D.
.
A.
C.
2
3
2
n−1
Câu 46. Tính lim 2
n +2
A. 1.
B. 3.
C. 2.
D. 0.
Câu 47. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 48. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 49. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. 2020.
D. log2 2020.
Câu 50. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3
a3 15
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
5
3
25
25
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
C
3.
C
4.
C
6.
C
8.
C
10.
C
12.
C
D
5.
7.
B
9.
11.
C
B
13.
D
14.
C
15.
D
16.
C
D
18.
17. A
19.
C
20. A
21.
B
22. A
23.
B
24.
C
26.
C
28.
C
25. A
27.
C
29. A
C
31.
33.
B
35.
D
30.
D
32.
D
34.
B
36.
B
37.
B
38. A
39.
B
40. A
41.
42.
C
43. A
D
44. A
45.
C
46.
47.
C
48.
C
50.
C
49.
B
1
D