Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn tập toán thptqg c7 (140)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (118.36 KB, 6 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có một hoặc hai.
D. Có hai.
Câu 2. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 27 m.
D. 1587 m.
Câu 3. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.


C. Cả hai đều đúng.

D. Chỉ có (I) đúng.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9
21

Câu 4. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
3

B. Pmin


9 11 + 19
=
.

9

Câu 5. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 5 mặt.

Câu 6. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
Câu 7. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 12.

Câu 8. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.

D. 8.
D. 2.


Câu 9. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá

trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới "đây?!
5
5
A. (1; 2).
B. 2; .
C.
;3 .
D. [3; 4).
2
2



x = 1 + 3t




Câu 10. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là










x = −1 + 2t
x = −1 + 2t
x = 1 + 3t
x = 1 + 7t
















C. 

.
D. 
A. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .
y = −10 + 11t . B. 
















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
Trang 1/5 Mã đề 1



Câu 11. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. 4.
C. .
D. .
A. .
8
2
4
Câu 12. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 13. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên

√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
12
24
Câu 14. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.

p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 15. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Câu 16. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. a 3.
C. 2a 6.
D.

.
2
Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. −e.
D. − 2 .
e
2e
e
Câu 18. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 19. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C. − ; +∞ .
A. −∞; − .
2
2
2


!
1
D.
; +∞ .
2

Câu 20. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2 13.
.
C. 2.
B.
D. 26.
13
Câu 21. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 22. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.


B. +∞.

C. 1.

D. 2.
Trang 2/5 Mã đề 1


Câu 23. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
C. a 3.
D.
A.
.
B. a 2.
.
3
2
Câu 24. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
Câu 25. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.

B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 26.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

1
dx = ln |x| + C, C là hằng số.
x

B.
Z
D.

0dx = C, C là hằng số.
xα+1
x dx =
+ C, C là hằng số.
α+1
α

Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab

ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Z 1
Câu 28. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
B. 1.
A. .
4

Câu 29. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.

1
.

2

C. 0.

D.

C. 108.

D. 6.

Câu 30. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD


3
3
a 3
a3 3
a
3
.
C.
.
D.
.
A. a .
B.
3

3
9
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
Câu 32. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
B.

.
C. 5.
D. 68.
17
Câu 33. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
A. 8 3.
B. 7 3.
C. 8 2.
D. 16.
Câu 34. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.

D. m , 0.

Câu 35. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).

D. (−∞; 0) và (2; +∞).

C. (0; 2).

Câu 36. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).

A. 12 m.
B. 24 m.
C. 16 m.
D. 8 m.
2

Trang 3/5 Mã đề 1


Câu 37. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
!x
1

Câu 38. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log2 3.
B. − log3 2.
C. 1 − log2 3.
D. log2 3.
Câu 39. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.

D. 4 − 2 ln 2.


Câu 40. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = 2 x . ln x.
B. y0 =
.
C. y0 = x
.
D. y0 = 2 x . ln 2.
ln 2
2 . ln x
Câu 41. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 7 năm.
D. 8 năm.
2
1−n
bằng?
Câu 42. [1] Tính lim 2
2n + 1
1
1
1
B. 0.
C. .
D. − .
A. .

3
2
2
Câu 43. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
x

Câu 44. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 5%.
D. 0, 6%.
Câu 45. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).

Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (II) đúng.
−2x2

Câu 46. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
A. 3 .
B. 3 .
2e
e

C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

trên đoạn [1; 2] là
1
C. 2 .
e

D.

Câu 47. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.

1
√ .

2 e

D. Ba mặt.

d = 120◦ .
Câu 48. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C.
.
D. 3a.
2

Câu 49. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
D. V = 2a3 .
3
Trang 4/5 Mã đề 1


tan x + m

Câu 50. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C

3.

B

4. A

5.


B

6.

7.

B

8.

9.

D

13.

D
C

14. A

C

16. A
18.

B

19.


C

20.

21.

C

22. A
D

23.
27.

D
B

24.

25. A
C

29. A
31.

B

12.


15. A
17.

C

10.

C

11.

C

B

C

26.

D

28.

D

30.

B

32.


B

33.

D

34.

35.

D

36.

D
C

37.

C

38. A

39.

C

40.


D

42.

D

41. A
43.

D

44. A

45. A
47.
49.

D
B

46.

C

48.

C

50.


1

B



×