Tải bản đầy đủ (.pdf) (12 trang)

Bài tập toán thpt 1 (745)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.64 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tính lim
x→5
2
A. .
5

x2 − 12x + 35
25 − 5x
B. +∞.

2
C. − .
D. −∞.
5
1
Câu 2. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
9x


Câu 3. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. 1.
C. .
D. −1.
2
Câu 4. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
6
12
24
log 2x
Câu 5. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x

1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
2x ln 10
x
2x ln 10
Câu 6. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 7. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.

B. 2
.
C. √
.
D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
2n − 3
Câu 8. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
C. 1.
D. +∞.
1
Câu 9. [12213d] Có bao nhiêu giá trị ngun của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 2.
B. 1.
C. 4.
D. 3.
Câu 10. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng


cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 11. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Trang 1/11 Mã đề 1


Câu 12. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.
12 + 22 + · · · + n2
Câu 13. [3-1133d] Tính lim

n3
2
A. +∞.
B. .
C. 0.
3
x−3
Câu 14. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 0.

D. −4.

D.

1
.
3

D. 1.

Câu 15. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =

f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.

Câu 16. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
a3
a3 3
a
3
A.
.
B.
.
C. a3 .
D.
.
3
6
2

x−2
Câu 17. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. −3.
D. − .
3
Câu 18. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
x2 − 9
Câu 19. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. +∞.

D.


3b + 2ac
.
c+3

D. 3.

Câu 20. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
a 7
11a2
a2 2
a2 5
A.
.
B.
.
C.
.
D.
.
8
32
4
16


Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. 3.
C. −3.
D. − .
3
3
Câu 22. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 23. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
−2x2

Câu 24. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B.
.
e
2e3

C. Khối tứ diện đều.


D. Khối 12 mặt đều.

trên đoạn [1; 2] là
2
C. 3 .
e

D.

1
√ .
2 e
Trang 2/11 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 25. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.

D.
.
A.
9
16
13
26
Câu 26. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
D. 12.
2n + 1
Câu 27. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.
Câu 28. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.
√3
4
Câu 29. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
A. a 3 .

B. a 3 .
C. a 8 .

D. Hình chóp.
5

D. a 3 .

Câu 30. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
7n2 − 2n3 + 1
Câu 31. Tính lim 3
3n + 2n2 + 1
7
B. 1.
A. .
3
Câu 32. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
1
A. − .
B.
.
3
3


2
C. - .
3

D. 0.

!n
4
C.
.
e

!n
5
D.
.
3

Câu 33. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
Câu 34. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.

B. n3 lần.
C. n2 lần.
D. n lần.
a
1
Câu 35. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
3
x −1
Câu 36. Tính lim
x→1 x − 1
A. +∞.
B. −∞.
C. 3.
D. 0.
Câu 37. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
Câu 38. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.

B. V = 4.
C. V = 5.
D. V = 6.


Câu 39. Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x

A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
Trang 3/11 Mã đề 1


Câu 40. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 41. [12214d] Với giá trị nào của m thì phương trình
B. 0 < m ≤ 1.

A. 2 ≤ m ≤ 3.

Câu 42. Dãy số nào có giới hạn bằng 0?!
n
−2
2
A. un = n − 4n.
B. un =

.
3
Câu 43. Tính lim

x→+∞

A. 3.

x+1
bằng
4x + 3
1
B. .
3

Câu 44. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

1
3|x−2|

D. 8 mặt.
= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 < m ≤ 3.

n3 − 3n

C. un =
.
n+1

!n
6
D. un =
.
5

C.

1
.
4

D. 1.

C. 4.

D. 24.

Câu 45.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =

f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

!4x
!2−x
2
3


Câu 46. Tập các số x thỏa mãn
"
!
" 3
! 2
2
2
A.
; +∞ .
B. − ; +∞ .
5
3

k f (x)dx = f

B.
Z
D.


f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

#
2
C. −∞; .
5

#
2
D. −∞; .
3

Câu 47. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 48. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. m = −1.

Câu 49. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các

mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. Cả ba mệnh đề.

Câu 50. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
2
2
2

D. (I) và (III).
!
1
D. −∞; − .
2


Câu 51. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C.
.
D.
.


a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 4/11 Mã đề 1


Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2

a 2
B.
A. a 3.
.
C.
.
D. a 2.
3
2
!
1
1
1
Câu 53. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. +∞.
C. .
D. .
2
2
Câu 54. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 10 cạnh.

Câu 55. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).

Câu 56. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.

1
= 0.
nk
n
D. lim q = 0 (|q| > 1).

B. lim

C. 6.

D. 4.

Câu 57. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 58. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
Z 2
ln(x + 1)
Câu 59. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. 1.
D. −3.
Câu 60. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
Câu 61. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4

4
4
Câu 62. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
1
Câu 63. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
1

Câu 64. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).


D. D = (−∞; 1).

Câu 65. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).

D. D = R.

C. D = R \ {0}.

Trang 5/11 Mã đề 1


Câu 66. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. 6.

D. 8.

Câu 67. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Năm mặt.

Câu 68. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.

B. Khối tứ diện đều.

D. Khối bát diện đều.

C. Khối lập phương.

Câu 69. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].

D. [−1; 2).

Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 2
a 3
.
B. a3 3.
C.
.
D.

.
A.
2
4
2
Câu 71. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 72. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.

D. 7, 2.

Câu 73. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 74. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
n2 − 2
n2 + n + 1
.
B.

u
=
.
C.
u
=
.
D.
u
=
.
A. un =
n
n
n
(n + 1)2
5n + n2
n2
5n − 3n2
1
Câu 75. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
n−1
Câu 76. Tính lim 2
n +2
A. 0.
B. 3.

C. 2.
D. 1.
Câu 77.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
4
2
12
4
Câu 78. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 26.
B. 2 13.
C.

.
D. 2.
13
x x
0
Câu 79. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) =
.
D. f 0 (0) = 10.
ln 10
Z 3
x
a
a
Câu 80. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
mx − 4
Câu 81. Tìm m để hàm số y =

đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Trang 6/11 Mã đề 1


Câu 82. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.

D. S = 24.

Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3

a3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
8
4
12
Câu 84. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
0 0 0 0
0
Câu 85.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.

.
B.
.
C.
.
D.
.
2
2
7
3

Câu 86. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 87. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 88. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.

C. 5.


Câu 89. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m > 0.
 π
Câu 90. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4
3 π6
A.
e .
B.
e .
C. e .
2
2
2

D. 3.
D. m ≥ 0.

D. 1.

Câu 91. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 7.

B. 5.

C. 0.

D. 9.

Câu 92. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 93. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 94. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 95. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .
Z
Câu 96. Cho

1
A. .
4

B. aα bα = (ab)α .

C. aα+β = aα .aβ .

D.

α

β.
=
a


1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B.

1
.
2

C. 1.


D. 0.
Trang 7/11 Mã đề 1


Câu 97. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 98. Tính lim
A. 0.

2n2 − 1
3n6 + n4
B. 1.

C.

2
.
3

D. 2.

3

Câu 99. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .

C. e.

D. e3 .

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
3
3
4
3

Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 101. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11

A. .
B. 5.
C.
.
D. 7.
2
2
1
Câu 102. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 2.
D. 1.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 103. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −5.
C. −2.
D. 0.
Câu 104. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .

Câu 105. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Câu 107. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có

thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
Câu 108. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e
Câu 109. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {4; 3}.

D. 3.

D. {3; 4}.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 3.

C. 6.
D. 2 2.
Câu 110. [3-1214d] Cho hàm số y =

Trang 8/11 Mã đề 1


Câu 111. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
A. 8 3.
B. 7 3.
C. 16.
D. 8 2.
Câu 112. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
A.
.
B.
.
C. − .
D. −
.
25

100
16
100
Câu 113. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 114. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

D. Khơng có câu nào
sai.
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
d = 120◦ .
Câu 116. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 3a.
A. 4a.
B.
2
Câu 117. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

B. Câu (I) sai.

C. Câu (II) sai.

x→a

x→a

Câu 118. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 119. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
[ = 60◦ , S O
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 121.
thức nào sau đây khơng có nghĩa
√ Biểu


−3
0
A. (− 2) .
B. (−1)−1 .
C.
−1.
D. 0−1 .
Trang 9/11 Mã đề 1


Câu 122. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 123. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 4.

Câu 124. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.

D. 2.
D. m > 0.

Câu 125. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.

Câu 126. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
36
6
6
Câu 127. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 9.
B. 3 3.
C. 8.
D. 27.
Câu 128. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

C. 30.


D. 12.

Câu 129. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
24
48
8
24
x+3
Câu 130. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?

A. Vô số.
B. 3.
C. 2.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

4.

B

5. A

6.

7. A

8. A

9.


C
B
D

10.

B

11. A

12. A
D

13.

16.

17. A

18.

19. A

20. A

21. A

22. A
B


25.

C

14.

15. A

23.

D

D
C

24. A
C

26.

B

27.

B

28.

29.


B

30.

B

32.

B

34.

B

31.

C

33. A
35.
39.

36.

C

37.

D


38.

C
B

40.

C
D

41.

C

C

42.

B

43.

C

44.

B

45.


C

46.

B

47. A

48.

C

49. A

50.

C

52.

C

51.

D

53. A

54.


D
D

55.

D

56.

57.

D

58.

59.

D

60.

D
D

61.

C

62.


63.

C

64.

65.
67.

D

C

C

66.
68.

C
1

D
B


69. A

70. A


71. A

72.

73.

D

74.

75.

D

76. A

77. A
79.

82.
B
D
C

87.

D
B

84.


D

86.

D

88. A
90. A

B
D

91.

92. A

93. A

C

94.

95.

D

96.

97. A

99.

C

80.

B

85.
89.

B

78.

81. A
83.

C

B

98. A
B

100.

101. A

B


102. A

103.

D

105.

C

106.

107.

C

108.

109.

D

110.

C

111.

C


104.
B

D
B

112.

D
D

113.

D

114.

115.

D

116.

B

117. A

118.


B

119. A

120. A

121.
123.

D
B

125.
127.

122.

B

124.

B

126. A

C
B

129. A


2

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×