Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (710)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.24 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Những số nào sau đây vừa là số thực và vừa là số ảo?
A. Chỉ có số 1.
B. 0 và 1.
C. Khơng có số nào.

D. C.Truehỉ có số 0.

Câu 2. Cho số phức z = 2 + 5i. Tìm số phức w = iz + z.
A. w = −7 − 7i.
B. w = 3 + 7i.
C. w = 7 − 3i.

D. w = −3 − 3i.

Câu 3. Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = 8 − 17i. Khi đó hiệu phần thực và phần ảo
của z là
A. 7.
B. −3.
C. −7.
D. 3.
Câu 4. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.


B. −10.
C. −9.
D. 9.
Câu 5. Cho z là một số phức. Xét các mệnh đề sau :
I. Nếu z = z thì z là số thực.
II. Mơ-đun
√ của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z.
III. |z| = z · z
A. 1.
B. 2.
C. 3.
D. 0.
Câu 6. Trong các kết luận sau, kết luận nào sai
A. Mô-đun của số phức z là số thực.
C. Mô-đun của số phức z là số phức.

B. Mô-đun của số phức z là số thực dương.
D. Mô-đun của số phức z là số thực không âm.




Câu 7. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 12.
B. 6.

C. 11.
D. 5.
Câu 8. Tập nghiệm của bất phương trình log(x − 2) > 0 là
A. (3; +∞).
B. (12; +∞).
C. (2; 3).
i
R2
R 2 h1
Câu 9. Nếu 0 f (x)dx = 4 thì 0 2 f (x) − 2 dx bằng
A. −2.
B. 6.
C. 8.

D. (−∞; 3).
D. 0.

Câu 10. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số
đã cho là
A. −1.
B. 0.
C. 2.
D. 3.
Câu 11. Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC là tam giác vuông cân tại B, AB = a. Biết
khoảng cách từ A đến mặt phẳng (A′ BC) bằng 36 a, thể tích khối lăng trụ đã cho bằng




A. 42 a3 ..

B. 22 a3 .
C. 62 a3 .
D. 2a3 .
Câu 12. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l. Diện tích xung quanh của hình nón
đã cho bằng
A. 31 πr2 l.
B. πrl.
C. 32 πrl2 .
D. 2πrl.
Câu 13. Tổng nghịch đảo các nghiệm của phương trình z4 −z3 −2z2 +6z−4 = 0 trên tập số phức bằng
3
3
1
1
A. .
B. − .
C. − .
D. .
2
2
2
2
2
2
Câu 14. Biết x = 2 là một nghiệm của phương trình x + (m − 1)x − 8(m − 1) = 0 (m là tham số phức
2
có phần ảo âm).
√ Khi đó, mơ-đun của√số phức w = m − 3m + i bằng bao nhiêu ?

A. |w| = 3 5.

B. |w| = 5.
C. |w| = 5.
D. |w| = 73.
Trang 1/5 Mã đề 001


Câu 15. Biết z = 1 + 2i là một nghiệm phức của phương trình z2 + (m − 1)z + m − 1 = 0 (m là tham số
phức). Khi đó phần ảo của m bằng bao nhiêu?
3
3
7
7
B. − .
C. .
D. .
A. − .
4
4
4
4
2
Câu 16. Biết z = 1 − 3i là một nghiệm của phương trình z + az + b = 0 ( với a, b ∈ R ). Khi đó hiệu
a − b bằng
A. −8.
B. −12.
C. 8.
D. 12.
Câu 17. Biết z là số phức thỏa mãn z2 + 3z + 4 = 0. Khi đó mơ-đun của số phức w = z + 1 bằng bao
nhiêu ?. √




B. |w| = 5.
C. |w| = 3.
D. |w| = 2 2.
A. |w| = 2.
Câu 18. Gọi z1 , z2 là hai nghiệm phức của phương trình 2(1+i)z2 −4(2−i)z−5−3i = 0. TổngT = |z1 |2 +|z2 |2
bằng bao nhiêu?

13
13
A. T = 9.
B. T =
.
C. T = 3.
D. T = .
2
4
Câu 19. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. π.
B. 2π.
C. 4π.
D. 3π.
Câu 20. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. π.
B. 2π.
C. 3π.
D. 4π.

Câu 21. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Parabol.
C. Đường tròn.
D. Hai đường thẳng.
Câu 22. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w =
√ x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
B. w = 27√− i hoặcw = 27 √
+ i.
A. w = 1 +
√ 27i hoặcw = 1 −√ 27i.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27 hoặcw = 1 − 27.

Câu 23. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
3
1
B. |z| > 2.
C. < |z| < .
D. ≤ |z| ≤ 2.
A. |z| < .
2
2

2
2
Câu 24. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


.
C. .
D. 5π.
A. 25π.
B.
4
2
1+i
Câu 25. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
A. S = .
B. S = .
C. S = .
D. S = .
2
2
4
4

Câu 26. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


A. 25π.
B. 5π.
C. .
D. .
4
2
Câu 27. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
A. w = 1 + √27 hoặcw = 1 − √27.
B. w = √
27 − i hoặcw = 27√+ i.
C. w = 1 + 27i hoặcw = 1 − 27i.
D. w = − 27 − i hoặcw = − 27 + i.

Câu 28. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 33.
B. |z| = 10.
C. |z| = 5 2.
D. |z| = 50.
Trang 2/5 Mã đề 001



Câu 29. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.
Câu 30. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
15
25
25
A. S = .
B. S = .
C. S = .
2
4
2

D. S =

1+i
z
2

15
.
4


Câu 31. Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy. Nếu
số thuần ảo thì mệnh đề nào sau đây đúng?
A. Tam giác OAB là tam giác vuông.
C. Tam giác OAB là tam giác đều.

z

w

B. Tam giác OAB là tam giác nhọn.
D. Tam giác OAB là tam giác cân.

Câu 32. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.
A. 0.
B. 2.
C. 1.
D. −1.
Câu 33. Cho số phức z thỏa mãn |z| + z = 0. Mệnh đề nào đúng?
A. z là một số thực không dương.
B. Phần thực của z là số âm.
C. z là số thuần ảo.
D. |z| = 1.
z
là số thực. Tính giá trị biểu
Câu 34. Cho số phức z , 0 sao cho z không phải là số thực và w =
1 + z2
|z|
bằng?
thức

1 + |z|2

1
2
1
B. 2.
C.
.
D. .
A. .
2
3
5
Câu 35. (Sở Nam Định) Tìm mơ-đun của số phức z biết z − 4 = (1 + i)|z| − (4 + 3z)i.
1
A. |z| = 4.
B. |z| = 2.
C. |z| = 1.
D. |z| = .
2
Câu 36. Gọi z1 ; z2 là hai nghiệm của phương trình z2 − z + 2 = 0.Phần thực của số phức
[(i − z1 )(i − z2 )]2017 bằng bao nhiêu?
A. 22016 .
B. −22016 .
C. 21008 .
D. −21008 .


√ 


2 42 √
Câu 37. Cho số phức z thỏa mãn 1 − 5i |z| =
+ 3i+ 15. Mệnh đề nào dưới đây là đúng?
z
1
5
3
A. 3 < |z| < 5.
B. < |z| < 3.
C. < |z| < 2.
D. < |z| < 4.
2
2
2
Câu 38. Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
A. P = 2016.
B. max T = 2 5.
C. P = 1.
D. P = −2016.
Câu 39. Cho hàm số y = f (x) có bảng biến thiên như sau:
x

−∞

y′

+∞

−2




+∞

−2
y
−∞

−2

Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 2.
B. 3.
C. 1.
D. 4.
Trang 3/5 Mã đề 001


Câu 40. Cho hàm số y = x3 − 3x2 − 9x − 5. Trong các khẳng định sau, khẳng định nào sai?
A. Giá trị cực tiểu của hàm số là 3.
B. Hàm số có hai điểm cực trị.
C. Hàm số có một điểm cực đại và một điểm cực tiểu.
D. Giá trị cực đại của hàm số là 0.
Câu 41. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−∞; 0).
B. (−1; +∞).
C. (0; +∞).
D. (−1; 0).
Câu 42. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào

sai?
A. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
B. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
C. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
D. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
Câu 43. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
B. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
D. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
Câu 44. Cho hàm số y = −x4 − x2 + 1. Trong các khẳng định sau, khẳng định nào sai?
A. Đồ thị hàm số cắt trục tung tại điểm (0; 1).
B. Đồ thị hàm số khơng có tiệm cận.
C. Điểm cực tiểu của hàm số là (0; 1).
D. Đồ thị hàm số có một điểm cực đại.
. Gọi A và B là hai điểm thuộc
Câu 45. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
3
đường trịn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng


5
.
B. 24
.
C. 4 2.
A. 24
D. 8 2.

5
Câu 46. Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị
hàm số đã cho có tọa độ là
A. (1; 0).
B. (0; 1).
C. (−1; 2).
D. (1; 2).
Câu 47. Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A. ln 23 .

B. ln 23 .

 
C. ln 6a2 .

D. ln a.

Câu 48. Trong không gian Oxyz, cho đường thẳng d : x−1
= y−2
= z+3
. Điểm nào dưới đây thuộc d?
2
−1
−2
A. M(2; −1; −2).
B. P(1; 2; 3).
C. N(2; 1; 2).
D. Q(1; 2; −3).
R
Câu 49. Cho 1x dx = F(x) + C. Khẳng định nào dưới đây đúng?

A. F ′ (x) = ln x.
B. F ′ (x) = 1x .
C. F ′ (x) = − x12 .
D. F ′ (x) = x22 .




Câu 50. Có bao nhiêu giá trị nguyên của tham số a ∈ (−10; +∞) để hàm số y =

x3 + (a + 2)x + 9 − a2


đồng biến trên khoảng (0; 1)?
A. 5.
B. 12.
C. 11.
D. 6.
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×