Tải bản đầy đủ (.pdf) (13 trang)

Bài tập toán thpt 4 (176)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.81 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).

D. (1; −3).

Câu 2. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
a b2 + c2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √


.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 3. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 3.
C. −8.

D. 4.

B. 2.

D. 3.

Câu 4. [1-c] Giá trị biểu thức
A. 1.
Câu 5. Tính lim
A. 1.


5
n+3

C. 0.

Câu 6. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.

D. e.

Câu 7. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng



a 2
a 2
B.
.
C.
.
D. a 2.
A. 2a 2.
2
4
x−1

Câu 8. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 2.
B. 2.
C. 6.
D. 2 3.
Câu 9. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
2

Câu 10. Tính lim

x→+∞

A. −3.

x−2
x+3
B. 1.

Câu 11. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.


C. D = R \ {1; 2}.

D. D = [2; 1].

2
C. − .
3

D. 2.

C. 2.

D. 4.

Câu 12. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Cả hai đều đúng.

D. Chỉ có (I) đúng.
Trang 1/10 Mã đề 1


Câu 13. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6

2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
2
2n − 1
Câu 14. Tính lim 6
3n + n4
2
C. 2.
D. 0.
A. 1.
B. .
3
Câu 15. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 16. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 17. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 20.

D. 30.

Câu 18. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √

.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
 π
x
Câu 19. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A.
e .
B. e .
C.
e .
D. 1.
2
2
2

Câu 20. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 21. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 16.
D. 8 2.
Câu 22. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 23. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x
Câu 24. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.

C. y0 =
C. 4.


Câu 25. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.

ln 10
.
x

D.

1
.
10 ln x

D. 8.
D. 13.
Trang 2/10 Mã đề 1


Câu 26. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. .
B. 2.
C. −2.
2
!2x−1
!2−x
3

3
Câu 27. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].

D. (+∞; −∞).

Câu 28. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.

D. m = −2.

1
D. − .
2

Câu 29. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.

C. f (x) xác định trên K.
1 − n2
Câu 31. [1] Tính lim 2
bằng?
2n + 1
1
1
B. − .
A. .
3
2

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

C.

1
.
2

D. 0.

Câu 32. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 8 mặt.

D. 9 mặt.


Câu 33. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 34. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
un
Câu 35. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 36. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.

B. 2e.
C. .
e
Câu 37. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B.
u
=
.
n
(n + 1)2
5n + n2
Câu 38.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

n2 − 2
C. un =
.
5n − 3n2
Z

D. 2e + 1.
n2 − 3n

D. un =
.
n2

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

f (u)dx = F(u) +C.

Trang 3/10 Mã đề 1


Câu 39.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.

C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 40. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3

C. 0.

Câu 41. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 5.
A. 25.
B. .
5

D.

7
.
3




Câu 42. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 5.

D. 6.

Câu 43. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 44. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. −4.

D. 4.

Câu 45. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 6.
C. .
D. 9.
A. .

2
2
1

Câu 46. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.

Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.

D. 1.

Câu 48. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
1 − 2n
bằng?
Câu 49. [1] Tính lim
3n + 1

2
1
2
A. − .
B. 1.
C. .
D. .
3
3
3
Câu 50. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 51. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 30.

D. 12.
Trang 4/10 Mã đề 1


Câu 52. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là



a3 5
a3 6
a3 15
3
A.
.
B.
.
C. a 6.
.
D.
3
3
3
1
Câu 53. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. − .
C. .
D. −3.
3
3
Câu 54. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.

D. Số cạnh của khối chóp bằng 2n.
Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Câu 56. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (I) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (II) và (III).

Câu 57. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3 3
a3
a 3
3
A.
.
B. a .
C.
.
D.
.
6
2
3
Câu 58.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh

Z đề nàoZsai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

B.

g(x)dx.
Z

Z
D.

g(x)dx.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.


Câu 59. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 60. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
2

Câu 61. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. √ .
C. 3 .
A. 3 .
2e
e
2 e

D.

1
.
e2
Trang 5/10 Mã đề 1



Câu 62. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
3
2
Câu 63. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Z 1
Câu 64. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 0.
C. .

D. 1.
4
2
Câu 65. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Câu 66. Dãy! số nào có giới hạn bằng 0?!
n
n
−2
n3 − 3n
6
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
A. un =
5

3
n+1
Câu 67. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.
D. Khối bát diện đều.
1
Câu 68. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
1
Câu 69. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 70. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.
Câu 71. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

log 2x
Câu 72. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 4 ln 2x
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
2x3 ln 10
x3 ln 10
2x3 ln 10
x3 − 1
Câu 73. Tính lim
x→1 x − 1
A. +∞.
B. 3.
C. −∞.

D. 0, 8.

D. Một mặt.

D. y0 =

1 − 2 log 2x
.
x3

D. 0.

Câu 74. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
Câu 75. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
d = 60◦ . Đường chéo
Câu 76. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






2a3 6
a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 6/10 Mã đề 1


Câu 77. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 78. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.

A. Câu (II) sai.

B. Khơng có câu nào C. Câu (I) sai.
sai.
Câu 79. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).
C. D = R \ {1}.
Câu 80. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).

D. Câu (III) sai.

D. D = R \ {0}.
D. (−∞; −1).

Câu 81. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9
13
.
B. − .
C. −
.
D.
.

A.
100
16
100
25
Câu 82. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
cos n + sin n
Câu 83. Tính lim
n2 + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
tan x + m
nghịch biến trên khoảng
Câu 84. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 85. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.


D. −1 + 2 sin 2x.

Câu 86. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
3

Câu 87. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.

D. e2 .

Câu 88. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.


D. 24.

C. 4.

[ = 60◦ , S O
Câu 89. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
Trang 7/10 Mã đề 1


Câu 90. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3

A. .
B. 1.
C. .
D.
.
2
2
2
Câu 91. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .

Câu 92. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
D. 7.


Câu 93. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

A. 3.
B. 2 3.
C. 2 + 3.
D. 3 2.


2
Câu 94. Thể tích của khối lập phương

cạnh
bằng
a

3


2a 2
A. V = a3 2.
B.
.
C. 2a3 2.
D. V = 2a3 .
3
!4x
!2−x
2
3
Câu 95. Tập các số x thỏa mãn


#
" 3 ! 2
"
!
#
2

2
2
2
; +∞ .
A. −∞; .
B.
C. − ; +∞ .
D. −∞; .
5
5
3
3
Câu 96. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 97. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 98. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.


C. 3.

D. 2.

Câu 99. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m ≥ .
D. m > .
A. m < .
4
4
4
4
Câu 100. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

2a3
4a3
4a3 3
2a3 3
A.
.
B.
.

C.
.
D.
.
3
3
3
3
Câu 101. √
Tính mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √

4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Câu 102. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 32π.
D. 8π.
2−n
Câu 103. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. −1.
D. 2.

Trang 8/10 Mã đề 1


x+1
Câu 104. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
2
3
6
3
2
x
Câu 105. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 106. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.

D. ln 14.
Câu 107. Khối lập phương thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.

D. {3; 3}.
D. Năm mặt.

Câu 109. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 110. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2

2
2
a 7
a 2
11a
a 5
A.
.
B.
.
C.
.
D.
.
16
8
4
32
Câu 111. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
C. (0; +∞).
D. (0; 2).
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.

B.
.
C.
.
D.
.
A.
12
12
4
6

Câu 113. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. − .
C. 3.
D. .
3
3
Câu 114. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
D. 5.
A. 2.
B. 1.
C. 3.

x2 + 3x + 5
Câu 115. Tính giới hạn lim
x→−∞

4x − 1
1
1
A. − .
B. 0.
C. .
D. 1.
4
4
2n − 3
Câu 116. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. −∞.
D. +∞.

Câu 117. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).

2
2
Câu 118. [1]! Tập xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; .
C. −∞; − .
2
2
2

!
1
D. − ; +∞ .
2
Trang 9/10 Mã đề 1


Câu 119. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
2
x − 12x + 35
Câu 120. Tính lim

x→5
25 − 5x
2
2
A. − .
B. −∞.
C. +∞.
D. .
5
5
2
Câu 121. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 0.
B. 7.
C. 9.
D. 5.
Câu 122. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.


B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.
2

x
Câu 123. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = .
D. M = e, m = 1.
A. M = e, m = 0.
B. M = , m = 0.
e
e
x−3 x−2 x−1
x
Câu 124. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 125. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
6
24
12
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 126. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC
√là

3
3


a 3
a3 3
a 2
A.
.
B.
.
C.
.
D. 2a2 2.
24
24
12
Câu 127. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 128. [1] Đạo hàm của hàm số y = 2 x là

1
1
.
D. y0 = x
.
ln 2
2 . ln x
d = 120◦ .
Câu 129. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 4a.
D. 3a.
2
Câu 130. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√

3
a 5
a 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5

A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

Trang 10/10 Mã đề 1


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.
3.

D
C

5.

2.

C


4.

C

6.

D
D

7.

B

8.

9.

B

10.

B

12.

B

D


11.
13.

C

14.

15.

C

16.

17.

D

20.

C

26.

B

29.

C
B


35.

C

C

28.

D

30.

D

32.

D

34.

33. A
37.

D

24. A

25.

31.


B

22.

C

23. A
27.

B

18. A

19. A
21.

D

B

36. A
38.

B

39. A

40.


B

41. A

42. A

B

43.

C

44.

45.

C

46. A

47.

D

49. A
51.
53.

D


48.

D

50.

D

52.

B

54.

B

55. A

D

56.

57.

58.

C

59. A


C
B

60.

61.

D

63.

C

62. A

C

64.

65. A
67.

B

66.
68.

B
1


C
B
D


69. A

70. A

71.

B

72.

73.

B

74. A

75.

76.

D

77.

78.


C

79. A
C

81.
83.
85.

D
D

89.
C

D

93.
C

80.

C

82.

C

B


B

90.

B

92.

C

94.

C

96.

C
D
B

103.

104.

C

106.

D


108. A

C

105.

B

107.

B

109.

110.

B

111. A

112.

B

113.

114. A

115. A


116. A

117. A

118.

D

119.

120.

D

121.

122.

D

123. A
125.

B

126. A

127. A


128. A

129. A

130.

C

88.

100.

101. A

124.

D

98.

97. A
99.

B

86.

87. A

95.


D

84.

B

91.

B

B

2

C
D

B
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×