Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (51)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.19 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 2. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
Câu 3. Biểu thức nào sau đây khơng
có nghĩa


−3
−1
−1.
C. (−1)−1 .


D. (− 2)0 .
A. 0 .
B.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 4. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 5.
Z Trong các khẳng định sau, khẳng định nào sai? Z
A.
0dx = C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z
1
xα+1
C.
dx = ln |x| + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.

x
α+1
2

Câu 6. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.

D. 3 − log2 3.

1
Câu 7. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
2

2

sin x
Câu 8. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x lần√lượt là
√= 2
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.


Câu 9. !Dãy số nào sau đây có giới !hạn là 0?
n
n
5
5
A.
.
B. − .
3
3

!n
4
C.
.
e

!n
1
D.
.
3

Câu 10. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5

.
B.
.
C.
.
D.
.
A.
25
5
3
25
Câu 11. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 12. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

Câu 13. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.

C. 12.

D. 8.


C. 36.

D. 6.

Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Trang 1/10 Mã đề 1


2n + 1
Câu 15. Tìm giới hạn lim
n+1
A. 2.
B. 0.

C. 1.

D. 3.

Câu 16. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
π
Câu 17. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá

3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
1
Câu 18. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 19. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 3.

D. 10.

Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .

B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 21. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 3.
.
B. 2.
C. 1.
D.
3
Câu 22. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 23. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
cos n + sin n
Câu 24. Tính lim
n2 + 1
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 25. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + 2 sin 2x.

Câu 26. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.


B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 27. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Trang 2/10 Mã đề 1


Câu 28. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 29. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 15 tháng.
D. 16 tháng.
x2 − 12x + 35
x→5
25 − 5x
2
2
B. .
C. +∞.
A. − .
5
5
Câu 31. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
2n + 1
Câu 32. Tính giới hạn lim
3n + 2
3
1
A. 0.
B. .
C. .
2
2
2−n

Câu 33. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 0.
C. 2.
Z 1
Câu 34. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
Câu 30. Tính lim

1
A. .
4

0

B.

1
.
2

C. 0.

D. −∞.

D. 4.

D.


2
.
3

D. 1.

D. 1.

x
Câu 35.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A.
.
B. .
C. .
D. 1.
2
2
2

Câu 36. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−∞; 1).
C. (−1; 1).

D. (1; +∞).


Câu 37. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 38. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lập phương.
C. Hình lăng trụ.
D. Hình chóp.

Câu 39. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 40. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B.
.

C. 2a 6.
D. a 3.
2
Câu 41. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 2, 4, 8.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2 3, 4 3, 38.
Trang 3/10 Mã đề 1


x2
Câu 42. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
4x + 1
Câu 43. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.

B. 2.
C. 4.
D. −1.
Câu 44. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.

D. 7, 2.

Câu 45. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

D. {3; 3}.

C. {4; 3}.

Câu 46. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 47. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.


Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
8
48
24
! x3 −3mx2 +m
1
Câu 49. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)

A. m ∈ (0; +∞).
B. m = 0.
C. m , 0.
D. m ∈ R.
Câu 50. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
2mx + 1
1
Câu 51. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.
1
Câu 52. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.

Câu 53. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 54. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 55. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.

D. 3.

[ = 60◦ , S O
Câu 56. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.

17
19
19
Trang 4/10 Mã đề 1


1
Câu 57. [1] Giá trị của biểu thức log √3
bằng
10

1
1
.
D. − .
3
3
Câu 58. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B. a 2.
C.
.
D.

.
3
2

Câu 59. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. 25.
D. .
5
3
2
Câu 60. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. 3.
D. −6.
A. −3.

B. 3.

C.

Câu 61. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.

Câu 62. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. m ≤ 0.
D. − < m < 0.
4
4
Câu 63. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.
C. 10.
D. 12.
Câu 64. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.
8
Câu 65. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.
Câu 66. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng

1
1
1
B. 4.
C. .
D. .
A. .
8
4
2
Câu 67. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
D.
; +∞ .
2
2
2
2
Câu 68. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. β = a β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
Câu 69. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
Câu 70. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

a3 3
a
a3 3

3
A.
.
B.
.
C. a .
D.
.
9
3
3
Câu 71. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 5/10 Mã đề 1


Z
C. Nếu
Z

D. Nếu

f (x)dx =

Z

f (x)dx =

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 72.

√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
3
.
B.
.
C. .
D.
.
A.
2
4
4

12
Câu 73. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 74. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a

C. lim+ f (x) = lim− f (x) = +∞.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x−3
bằng?
Câu 75. [1] Tính lim
x→3 x + 3
A. 1.
B. 0.
Câu 76. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

C. +∞.

D. −∞.

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
Câu 77. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].

C. [1; +∞).
D. (−∞; −3].
C. lim qn = 1 với |q| > 1.

Câu 78. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

D. lim

C. 5.

D. 6.

Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 80. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. .
C.
.
D. 7.
2
2

Câu 81. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 82. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.

D. 5.

Câu 83. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

D. Khối tứ diện đều.

C. Khối 12 mặt đều.

Câu 84. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 85. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng




14 3
20 3
A.
.
B. 6 3.
C.
.
D. 8 3.
3
3
Trang 6/10 Mã đề 1


Câu 86. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.

D. Không tồn tại.

Câu 87. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Cả hai đều đúng.


D. Chỉ có (I) đúng.

Câu 88. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −2.
D. −4.

x2 + 3x + 5
Câu 89. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. .
A. 1.
B. 0.
C. − .
4
4
Câu 90. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log √2 x.
D. y = log 14 x.
x2 − 9
Câu 91. Tính lim
x→3 x − 3

A. 6.
B. +∞.

C. −3.

D. 3.

Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

C. 5.

D. 3.

Câu 93. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 94. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
23
1637
.
B.

.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 95.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

k f (x)dx = f


B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

Câu 96. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 97. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 98. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
Trang 7/10 Mã đề 1


Câu 99. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. Khơng tồn tại.

D. −5.

Câu 100. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.

C. 10 cạnh.
D. 12 cạnh.
log(mx)
Câu 101. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.

Câu 102. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
a2 2
a2 7
11a2
a2 5
.
B.
.
C.
.
D.
.
A.
16
4
8
32
Câu 103. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. .

D. 2.
2
2
Câu 104. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −4.
A. −7.
B. −2.
C.
27
Câu 105. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
D. [6, 5; +∞).
Câu 106. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23
5
B.
.
C.
.
D. −
.
A. − .
16

100
25
100
Câu 107. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C. a.
D.
.
2
3
2
3
2
x
Câu 108. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
1 + 2 + ··· + n
Câu 109. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1

A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 1.
D. lim un = .
2
3
2
Câu 110. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 111. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 112. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −7.
B. 7.
C. −6 2.


D. 6 2.

Câu 113. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là

3
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 .
6
3
2
Trang 8/10 Mã đề 1


12 + 22 + · · · + n2
Câu 114. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3
3

Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
√3
4
Câu 116. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2

5
7
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 117. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 118. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 119. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 120. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 121.
Z Mệnh!0đề nào sau đây sai?
A.
f (x)dx = f (x).

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 122. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
Câu 123. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.

D. 0, 2.
x3 − 1
Câu 124. Tính lim
x→1 x − 1
A. 3.
B. 0.

C. −∞.

D. +∞.

Câu 125. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 7.

C. 9.

D. 0.

d = 30◦ , biết S BC là tam giác đều
Câu 126. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39

A.
.
B.
.
C.
.
D.
.
16
26
13
9
Câu 127. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.
C. 16π.
D. 32π.
Trang 9/10 Mã đề 1


Câu 128. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 3.
D. 8.
Câu 129. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5

7
A. 6.
B. .
C. .
D. 9.
2
2
Câu 130. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = ln x − 1.
D. y0 = 1 + ln x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3. A
D

5.

7.

D

11.
13.

4.

C

6.

C

8.

C

9.
C

12.

C
D

14.

B


16. A

17.

D

18.

C

19.
B

22.

23.

B

24.

25.

B

20. A

21.


B
C

26.

D

27. A

D

28. A

29.

D

31.

30.
34.

35.

D

39.

B
C


38. A
D

40. A

B

43.

D

36.

C

37.

B

32.

C

33. A

42.
C

45. A

47.
49.

D

10. A

15. A

41.

B

D

C

44.

B

46.

B

48.

B

50.


D
B

51. A

52. A

53. A

54.

D

55. A

56.

D

58.

D

57.

D

59.


C

60. A

61.

C

62.

63.
65.

D
C

67. A

64.

C

66.

C

68. A
1

B



69.

C
D

71.
73. A

70.

B

72.

B

74. A

75.

B

76.

77.

B


78.

79.
81.

D

80.

C
D
B

82. A

B

83.

D

84. A

85.

B

86. A

87.


B

88.

C

90.

C

C

89.
91. A
93.

92.
B

B

94. A

95.

D

96.


D

97.

D

98.

D

C

99.
101.

B

103.
105.

D

C

102.

C

104.


B
D

106.

B

107.

100.

108. A

C

109.

D

110.

111.

C

112.

113.

C


114. A

C
D

115.

B

116.

B

117.

B

118.

B

119.

B

120.

C


122.

C

121.
123.

D
B

124. A

125.

C

126.

C

128.

C

129.

C

130.


D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×