Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (154)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.91 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 2. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 3.

D. 1.

Câu 3. Mệnh đề nào sau đây sai?
Z


f (x)dx = F(x) + C.

A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 4. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
B.
A. a 6.
.
C.
.
D.
.
2
3
6
Câu 5. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.

A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
2

Câu 6. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e

D.

Câu 7. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. 4.

B. 2.

C. −1.

3


2
.
e3
Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.

Câu 8. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.
Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 10. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 11. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
8
4
Trang 1/10 Mã đề 1


Câu 12. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
√3
4
Câu 13. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
2
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
Câu 14. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).

Câu 15.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) − g(x))dx =

A.
Z
C.


( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 16. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.


C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

Câu 17.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =

f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 18. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
A. m > − .
4
4
Câu 19. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913

4913
68
2n + 1
Câu 20. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 0.
D. 3.
Câu 21. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
B.
.
C. 68.
D. 5.
17
Câu 22. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Năm cạnh.

Câu 23. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?

A. (1; +∞).
B. (−∞; −1).
C. (−∞; 1).

D. (−1; 1).

4x + 1
bằng?
x→−∞ x + 1
B. 4.

Câu 24. [1] Tính lim
A. −4.

C. −1.

D. 2.
Trang 2/10 Mã đề 1


Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B.
D. 26.
A. 2.

.
C. 2 13.
13
Câu 26. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 2.
D. 4.
Câu 27. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 28. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x4 − 2x + 1.
D. y = x + .

A. y = x3 − 3x.
B. y =
2x + 1
x
2
2
2
1 + 2 + ··· + n
Câu 29. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18

15
9
6
Câu 31. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

Câu 32. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 33. Khối đa diện đều loại {3; 3} có số đỉnh

A. 3.
B. 5.

C. 4.

D. 2.

Câu 34. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.

C. 20.

D. 30.

Câu 35. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 4.
C. 10.
D. 12.
x+2
Câu 36. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 3.
D. 2.

Trang 3/10 Mã đề 1


Câu 37. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
π
Câu 38. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
2

Câu 39. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.

D. 3.

1
5


Câu 40. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (−∞; 1).
B. D = R.
C. D = R \ {1}.

D. D = (1; +∞).

Câu 41. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.

D. {4; 3}.

Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
Câu 43. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
!
1

1
1
1
B. − ; +∞ .
C.
; +∞ .
D. −∞; − .
A. −∞; .
2
2
2
2
Câu 44. Biểu thức nào sau đây khơng có nghĩa
A. 0−1 .
B. (−1)−1 .

C.


−1.

−3


D. (− 2)0 .

3

Câu 45. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.

B. e2 .
C. e3 .

D. e5 .

Câu 46. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.

2
3
4
2
2
2
x y z−1
x y−2 z−3
C. =
=
.
D. = =
.
2
3
−1
1 1
1
Câu 47. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
8
4
2
Câu 48. Khối đa diện đều loại {5; 3} có số cạnh

A. 30.
B. 20.
C. 12.
D. 8.
Câu 49. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
1
Câu 50. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 51. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 4/10 Mã đề 1


Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.


D. Cả hai đều sai.

Câu 52.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6
4
2
12
Câu 53. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
!
x+1

Câu 54. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B. 2017.
C.
.
D.
.
A.
2017
2018
2018
Câu 55. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 56. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.

Câu 57. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 12.

D. 8.

Câu 58. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).


4n2 + 1 − n + 2
bằng
Câu 59. Tính lim
2n − 3
3
A. 2.
B. 1.
C. +∞.
D. .
2
Câu 60. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √

3
3


a3 3
a
3
2a
3
A.
.
B. a3 3.
C.
.
D.
.
6
3
3
!
3n + 2
2
Câu 61. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
Câu 62. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.

C. 9 mặt.

D. 6 mặt.

Câu 63. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2
2

2

2

2

Câu 64. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
cos n + sin n
Câu 65. Tính lim

n2 + 1
A. +∞.
B. 0.
C. −∞.
D. 1.
Trang 5/10 Mã đề 1


!
!
!
4x
1
2
2016
Câu 66. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
A. T =
2017

1 − xy
Câu 67. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
9 11 + 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 68. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.

D. Hai mặt.

Câu 69. Khối đa diện đều loại {3; 4} có số cạnh

A. 10.
B. 6.

D. 8.

C. 12.

A. 0 ≤ m ≤ 1.

B. 2 ≤ m ≤ 3.

1

= m − 2 có nghiệm
3|x−2|
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.

Câu 70. [3-12214d] Với giá trị nào của m thì phương trình

Câu 71. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 216 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 72. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?

A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
Câu 73. Giá trị lớn nhất của hàm số y =
A. 0.

B. 1.

D. R.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −2.
D. −5.

Câu 74. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
1
D. lim k = 0.
C. lim = 0.
n
n
Câu 75. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.

B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
un
Câu 76. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. 0.
D. −∞.
Câu 77. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 78. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. .
C. a.
D.
.
3
2
2
Trang 6/10 Mã đề 1



Câu 79. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
.
B. − .
C.
.
D.
.
A. −
100
16
100
25

Câu 80. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
B. (1; 2).
C.
;3 .

D. [3; 4).
A. 2; .
2
2
Câu 81. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.


Câu 82. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

3.
B. Phần thực là 2 −√1, phần ảo là √
3.
A. Phần thực là √2, phần ảo là 1 − √
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
2

Câu 83. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log2 3.


Câu 84. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 85. [1-c] Giá trị của biểu thức
A. 4.

log7 16
log7 15 − log7

B. −2.

15
30

bằng
C. 2.

D. −4.

Câu 86. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {2}.
D. {5}.
Câu 87.
Z Các khẳng định nào sau
Z đây là sai?


f (u)dx = F(u) +C. B.

Z

k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z
0
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).
A.

f (x)dx = F(x) +C ⇒

Z

2
Câu 88. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =


√4
5.

Câu 89. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
B. a 2.
C.
.
D.
.
2
4
Câu 90. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
2−n
Câu 91. Giá trị của giới hạn lim
bằng
n+1
A. −1.

B. 1.
C. 0.

D. −1 + 2 sin 2x.

D. 2.

Câu 92. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Trang 7/10 Mã đề 1


Câu 93. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
D. T = e + .
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
e
e
2
Câu 94. Giá trị của lim (3x − 2x + 1)
x→1
A. 1.
B. 3.

C. +∞.
D. 2.
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
8a3 3
8a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
n−1
Câu 96. Tính lim 2
n +2
A. 1.
B. 3.
C. 0.
D. 2.
1
Câu 97. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
1
Câu 98. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 99. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 6.
D. 3.
Câu 100. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.

D. 3 nghiệm.


Câu 101. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
.
C.
.
D. 6 3.
B.
A. 8 3.
3
3
Câu 102. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
Câu 103. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3

triệu.
B. m =
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
x2
Câu 104. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = 0.
D. M = e, m = .
e
e
Câu 105. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.

D. 0, 3.
Trang 8/10 Mã đề 1




x2 + 3x + 5
Câu 106. Tính giới hạn lim
x→−∞
4x − 1
1
A. .
B. 0.
C. 1.
4
!4x
!2−x
2
3
Câu 107. Tập các số x thỏa mãn


3 #
2
"
!
"
!
2
2

2
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
3
5
5

1
D. − .
4

#
2
D. −∞; .
3

Câu 108.
√ [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 3.
C. 2.
D. 1.
Câu 109. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
log 2x
Câu 110. [3-1229d] Đạo hàm của hàm số y =


x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
x ln 10
2x ln 10
2x3 ln 10
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 111. [2] Phương trình log x 4 log2
12x − 8
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 112. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.

A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
[ = 60◦ , S O
Câu 113. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
!2x−1
!2−x
3
3



Câu 114. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).
D. (+∞; −∞).
Câu 115. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.

C. 20.

Câu 116. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {5; 3}.
x2 − 5x + 6
x→2
x−2
B. 5.

D. 12.
D. {3; 4}.

Câu 117. Tính giới hạn lim
A. −1.

C. 0.


D. 1.

Câu 118. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
D. 1.
2
2
Câu 119. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
Câu 120. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.

C. 30.

D. 8.
Trang 9/10 Mã đề 1


x+2
Câu 121. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng

x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
√3
Câu 122. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
Câu 123. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 124. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 8 3.
D. 16.
A. 7 3.
Câu 125. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).

B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

Câu 126. Giá trị cực đại của hàm số y = x − 3x + 4 là
A. 6.
B. −1.
C. 1.
x−2
Câu 127. Tính lim
x→+∞ x + 3
2
A. − .
B. 1.
C. −3.
3
1 − 2n
Câu 128. [1] Tính lim
bằng?
3n + 1
2

1
A. 1.
B. − .
C. .
3
3
Z 2
ln(x + 1)
Câu 129. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.

x→b

3

Câu 130. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.

c+1
c+3
c+2

D. 2.

D. 2.

D.

2
.
3

D. 0.
D.

3b + 2ac
.
c+2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D


1.
3.
5.

2. A

B

6.
D

9.
11.

D
B

17.

B

14.

B
C

16.
18. A


C
B

20. A

21.

B

22. A

23.

D

24.

B

26.

B

27. A

28.

29. A

31.


32.

C

12.

19.

34.

D

10.

C

13.

25.

B

8.

7. A

15.

D


4.

C

D
B
D

33.

C

C
D

35.

B

36.

D

37. A

38.

D


39.

40.

D

41.

B

42.

D

43.

B

C

45.

44. A
46.

D

D

47.


C

48. A

49.

C

50. A

51.

C

52.

D

53.

D

54.

D

55.

D


56. A

57.

B

58. A

59.

B

60.

C

61.

62.

C

63. A

64.

B

66.

68.

D
B

65.

B

67.

B

69.
1

D

C


70.
72.

71.

C
B

C


73. A

74. A

75.

B
B

76.

C

77.

78.

C

79. A

80.

C

81.

82.


C

83.

84.

C

85.

86.

D

87. A

88.

D

89.

90.

D

91. A

92. A


B
C
D
C

93. A
D

94.
C

96.

95.

C

97.

C

99.

D

100. A

101.

D


102. A

103.

98.

B

D

106.

D

107. A

C

108.
110.

105.

C

104.

B


C

109.

B

111.

112. A

B

113. A

114.

115.

C

116.

B

117. A

118.

B


119.

120.

D
B

121. A

C

122.

D

123.

C

124.

D

125.

C

126. A
128.
130.


127.
B

129.
C

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×