Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (2)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.92 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

log 2x
Câu 1. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
.
B. y0 = 3
.
C. y0 =
.
A. y0 =
3
x
2x ln 10
2x3 ln 10

D. y0 =

1 − 2 ln 2x
.


x3 ln 10

Câu 2. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m > 3.
D. m ≤ 3.
Câu 3. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
Câu 4. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.
Câu 5. Tính lim
A. 1.

2n2 − 1
3n6 + n4
B.

2
.
3

C. 20.


D. 8.

C. 0.

D. 2.

Câu 6. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 7. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 3.

D. 4.

Câu 8. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = 0.


D. m = −1.

Câu 9. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.

D. Bốn mặt.

Câu 10. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.

D. 3.

Câu 11. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.

.
C.
.
D.
.
A.
4
12
12
6
log7 16
Câu 12. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. 4.
C. −4.
D. −2.
Trang 1/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3).
Câu 13. [4-1212d] Cho hai hàm số y =

Câu 14. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.
x−3
bằng?
Câu 15. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.
C. 1.

D. {3; 4}.
D. +∞.

Câu 16. [2] Cho hàm số f (x) = 2 .5 . Giá trị của f (0) bằng
1
.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.

A. f 0 (0) = 10.
B. f 0 (0) =
ln 10
Câu 17. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x

x→a

x

x→b

0

x→a

x→b

Câu 18. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4

đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3
4
2
3
−1
x−2 y+2 z−3
x y z−1
C.

=
=
.
D. = =
.
2
2
2
1 1
1
Câu 19. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.
C. 2.
D. 1.
!
1
1
1
+ ··· +
Câu 20. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.

B. .
C. .
D. 2.
2
2
Câu 21. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 22. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 34.
C.
A. 5.
.
D. 68.
17
Câu 23. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10

C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 2/10 Mã đề 1



Câu 24. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.

.
D.
.
A.
36
6
6
18
Câu 25. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 26. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
Câu 27. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.

B. 3.
C. 1.
1
Câu 28. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −1.
C. −2.

D. 8 mặt.
D. 2.
D. 2.

[ = 60◦ , S O
Câu 29. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.

17
19
19

Câu 30. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
d = 120◦ .
Câu 31. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 2a.
D. 4a.
A.
2
Câu 32. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.
C. 8.
D. 10.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 33. [3-12217d] Cho hàm số y = ln
x+1
0

y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 34. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 35. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 36. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B.
.

C. a 3.
D.
.
3
2
Câu 37. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e


Câu 38. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 1 − 2, phần ảo là − 3.

D. Phần thực là 2, phần ảo là 1 − 3.
Trang 3/10 Mã đề 1


a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 2.
D. 7.

Câu 39. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 4.

B. 1.

Câu 40. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 41. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.

D. Không tồn tại.

Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường

thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 43. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 44. [1] Tính lim

2
.
3
q
Câu 45. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0

√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
A.

1
.
3

1 − 2n
bằng?
3n + 1
2
B. − .
3

C. 1.

Câu 46. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.

D.

D. x = −2.


Câu 47. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 48. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = e + 1.
D. T = 4 + .
e
e
Câu 49. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 5.

C. 7.

D. 9.

Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 51. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
A. − .
B.
.
C.

.
D. −
.
16
100
25
100
Trang 4/10 Mã đề 1


Câu 52. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =

triệu.
3
(1, 01)3 − 1
!x
1
1−x

Câu 53. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. log2 3.
B. − log2 3.
C. − log3 2.
D. 1 − log2 3.
x−3 x−2 x−1
x
Câu 54. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
x+1

bằng
Câu 55. Tính lim
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. .
D. 3.
4
3
Câu 56. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 10.
D. 6.
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

a3 3
a3 2
a
3
A.
.
B.
.

C. a3 3.
D.
.
2
2
4
Câu 58. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
x
9
Câu 59. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. −1.
C. 2.
D. 1.
2
Câu 60. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

a3 3

a
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
3
9
Câu 61. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.

.
B.
.
C.
.
D.
.
6
36
24
12
x+2
Câu 62. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Trang 5/10 Mã đề 1


Câu 63. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
Câu 64. Khối lập phương thuộc loại

A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

Câu 65. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.
Câu 66. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.

Câu 67.
Xác
định
phần
ảo
của
số
phức

z
=
(
2 + 3i)2


A. 6 2.
B. −7.
C. 7.
D. −6 2.
1
Câu 68. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
log2 240 log2 15
Câu 69. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 1.
D. 4.
Câu 70. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.


D. 4 mặt.

Câu 71. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
[ = 60◦ , S A ⊥ (ABCD).
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

a3 2
a3 2
a3 3
.
B.
.
C.
.
D. a3 3.
A.
6
4
12

Câu 73. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể

tích của khối chóp S .ABCD là


3
3

a3
a
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
4
12
3
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 74. Tìm m để hàm số y =
x+m
A. 26.
B. 67.
C. 34.
D. 45.
Câu 75. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Trang 6/10 Mã đề 1


Câu 76. [1] Biết log6
A. 6.



a = 2 thì log6 a bằng
B. 36.

C. 108.

D. 4.

C. 30.

D. 12.


Câu 77. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã




√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
6
2
Câu 78. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.
C. 4.
D. 2.
Câu 79. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

Câu 80. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).

B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
3

2

Câu 81. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 20.

D. 8.

Câu 82. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là

√ S H ⊥ (ABCD), S A =
3
3
2a
4a3
2a3 3
4a 3
.
B.
.

C.
.
D.
.
A.
3
3
3
3
d = 300 .
Câu 83. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √

a3 3
3a3 3
B. V =
.
C. V =
.
D. V = 6a3 .
A. V = 3a3 3.
2
2
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5

.
B.
.
C.
.
D.
.
A.
4
6
12
12
Câu 85. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
D. 3 − 4 2.
cos n + sin n
Câu 86. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 87. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.


C. 10.

D. 8.

Câu 88. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3

!n
4
C.
.
e

!n
1
D.
.
3

Câu 89. [1] Đạo hàm của làm số y = log x là
1
ln 10

1
1
A. y0 = .
B. y0 =
.
C.
.
D. y0 =
.
x
x
10 ln x
x ln 10
Câu 90. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.

2
2
3
Câu 91. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.
Trang 7/10 Mã đề 1


12 + 22 + · · · + n2
n3
1
A. 0.
B. .
3


2
4n + 1 − n + 2
bằng
Câu 93. Tính lim
2n − 3
A. +∞.
B. 2.
Câu 92. [3-1133d] Tính lim

C.


2
.
3

D. +∞.

3
.
D. 1.
2
Câu 94. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 3.
C. 5.
D. 2.
1 − n2
Câu 95. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.
B. .
C. .
D. − .
3
2
2
Câu 96. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
C.

Câu 97. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
Câu 98. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
2

D. D = R \ {1; 2}.

Câu 99. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
x2 − 12x + 35
x→5
25 − 5x
2
2
A. −∞.
B. − .
C. .
D. +∞.

5
5
Câu 101. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 22016 .
D. 0.
Câu 100. Tính lim

Câu 102. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
un
Câu 103. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.

Câu 104. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
Câu 105. Trong các khẳng định sau, khẳng định nào sai?

A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 106. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
Câu 107. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

D. 8 mặt.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Trang 8/10 Mã đề 1


2n + 1
Câu 108. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. 0.
C. .
D. .

2
3
2
Câu 109. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
3
2
Câu 110. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu

f (x)dx =

Câu 111. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
C. −e.
D. − .
B. − .
e
2e
e
2
Câu 112. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
Câu 113. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
C. 12.

D. 8.
x+1
Câu 114. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. 1.
C. .
D. .
A. .
6
2
3
Z 3
a
x
a
Câu 115. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 4.
D. P = 16.

Câu 116. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
Câu 117. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).

C. 2.

D. 4.

B. lim qn = 1 với |q| > 1.
D. lim

1
= 0 với k > 1.
nk

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.

C. 2x + y − z = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 118. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
16
48
48
Trang 9/10 Mã đề 1



Câu 120. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a

x→a

x→a

!4x

3
2
Câu 121. Tập các số x thỏa mãn

3 #
2
!
"
2
2
A.
; +∞ .
B. −∞; .
5
5


!2−x

"
!
2
C. − ; +∞ .
3

Câu 122. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
C. (0; +∞).

#
2
D. −∞; .
3
D. (0; 2).

Câu 123. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 124. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.

B. 3.
C. 2.
D. Vơ nghiệm.
5
Câu 125. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.
!
!
!
x
1
2
2016
4
Câu 126. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 2016.
D. T = 2017.

A. T = 1008.
B. T =
2017
Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 7.
D. 5.
2
2
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
8a 3
a 3
4a 3
A.
.
B.
.

C.
.
D.
.
3
9
9
9
Câu 129. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. −3.
D. 0.
!
3n + 2
2
Câu 130. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

C

4.

5.

C

6.

7.

C

8.
D

9.
C


11.
13. A

B
D
B

10.

C

12.

C

14.

B

15.

B

16.

D

17.

B


18.

D
D

19.

C

20.

21.

C

22.

23.

C

24.

25.

B

C
D


26. A

27. A

C

28.

29.

C

31. A
33.

C

35.

B
D

40. A

C

42. A

43.


B

44.

45.

B

46.

47.

C

38. A
D

41.

32.
36.

C

39.

B

34.

D

37.

30.

B
C

48. A

C

49.

D

50.

51.

D

52.

53.

B

54.


55.

B

56. A

57. A

B
B
B

D

60.

61.

D

62.

63.

B

64.

65.


B

66.
68. A
1

D

58.

59.

67. A

B

C
D
B


69. A
72.

71. A
C

74.


D

73.

B

76.

C

75.
D

77. A

78. A

79.

B

80. A

81.

B

82.

83.


C

84.

D

85. A

86.

D

87.

88.

D

89.

90.

D

91. A

92.

B


94.

D

96. A
98.

95.

D

97.

D

C

101.

102.

C

103.

104.

B


105.

106.

B

107. A
111.

B

114. A

D
B
D
D
B

113.

C

115.

C

116.

D


117.

118.

D

119.

120.

D

121.

B
D
C

123.

122. A
124.

D

125. A

C


126. A
128.

B

109.

C

110. A
112.

D
D

100.

108.

B

93.

99.

B

C

127.

129.

B

130. A

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×