Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (5)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.4 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a 58
3a 38
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29


Câu 2. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng

vng góc
√ với đáy, S C = a 3. Thể tích khối chóp S .ABCD

3
3
3
a 3
a
a
3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
Câu 3.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)

B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 4. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).

C. (0; +∞).

D. (−∞; 2).

2n + 1
Câu 5. Tính giới hạn lim
3n + 2
3
1
2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 6. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.


Câu 7. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.
1
Câu 8. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 9. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.
D. 25 m.
1
Câu 10. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.

!
1
1
1
Câu 11. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
Trang 1/10 Mã đề 1


Câu 12. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.

C. 4.

D. 24.

Câu 13. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.

B. 4.
C. 10.
D. 11.
Câu 14. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.
Câu 15. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.

B. +∞.

D. 3 mặt.
un
bằng
vn
D. −∞.

C. 1.
1 + 2 + ··· + n
Câu 16. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = .
D. lim un = 1.
2
Câu 17. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4
2
2n + 1
Câu 18. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 2.
D. 1.
Câu 19. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0

là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 15, 36.
D. 20.
Câu 20. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n
0 0 0
Câu 21. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
24
6
9x
Câu 22. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. 2.
D. −1.
A. 1.
B. .
2
π
Câu 23. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.



A. T = 4.
B. T = 3 3 + 1.
C. T = 2.
D. T = 2 3.
!x
1
1−x
Câu 24. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. − log3 2.
C. 1 − log2 3.
D. − log2 3.
Trang 2/10 Mã đề 1


Câu 25. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 26. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 27. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3

a3
a3
.
C.
.
D.
.
A. a3 .
B.
12
24
6
Câu 28. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
d = 60◦ . Đường chéo
Câu 29. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0






2a3 6
a3 6
4a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 31. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
sin n
A.
.
B. .
C.
.
n
n

n


Câu 32.
số
y
=
x
+
3
+
6√− x
√ Tìm giá trị lớn nhất của hàm

A. 3 2.
B. 2 + 3.
C. 2 3.

1
D. √ .
n
D. 3.

Câu 33. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy

một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 35. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (4; +∞).
Câu 36. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.


C. Khơng có câu nào D. Câu (I) sai.
sai.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.

Câu 37. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Trang 3/10 Mã đề 1


Câu 38. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
n−1
Câu 39. Tính lim 2
n +2
A. 2.
B. 1.
C. 0.

D. 3.
x−2 x−1
x
x+1
Câu 40. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 41. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e
Câu 42. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).


D. 2e.

[ = 60◦ , S A ⊥ (ABCD).
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 3
a 2
a 2
.
B.
.
C.
.
D. a3 3.
A.
12
6
4
1
Câu 44. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.

D. 0 ≤ m ≤ 1.
!
5 − 12x
Câu 45. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 46. Cho
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√ số phức z thỏa mãn |z +
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 47. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
x−1
Câu 48. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.

B. 2 3.
C. 2 2.
D. 6.
Câu 49. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 50. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.

D. Bốn mặt.

Câu 51. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (1; +∞).

D. (−∞; 1).

Câu 52. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. (−∞; −3].
D. [1; +∞).

Trang 4/10 Mã đề 1


Câu 53. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

Câu 54. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.

D. Khối tứ diện đều.
D. 0, 8.

Câu 55. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
1
Câu 56. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.

D. −3 ≤ m ≤ 4.
x−3
Câu 57. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. +∞.
D. 0.
Câu 58. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
C. −e.
D. − .
B. − .
A. − 2 .
e
2e
e
!
x+1
Câu 59. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.

.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 60. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 61. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.

D. 3 nghiệm.

Câu 62. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 4.
D. 0, 2.
Câu 63.
có nghĩa
√ Biểu thức nào sau đây khơng
−3

−1
A.
−1.
B. 0 .

C. (−1)−1 .


D. (− 2)0 .

Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2

a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 65. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
Câu 66. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Trang 5/10 Mã đề 1


Câu 67. Dãy! số nào có giới hạn bằng 0?!
n
n
6
−2
A. un =
.
B. un =

.
5
3

C. un = n2 − 4n.

D. un =

n3 − 3n
.
n+1

0 0 0 0
0
Câu 68.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3

2
7
2

Câu 69. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
2

Câu 70. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 6.

D. 5.

Câu 71. Mệnh đề
!0 nào sau đây sai?
Z
f (x)dx = f (x).
A.
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 72. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.

Câu 73. Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. 7.
B. −7.
C. 6 2.


D. −6 2.

Câu 74. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.

D. x = −8.

Câu 75. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 76.
Z Trong các khẳng định sau, khẳng định nào sai? Z

dx = x + C, C là hằng số.

A.
Z
C.

0dx = C, C là hằng số.

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
D.
xα dx =
+ C, C là hằng số.
α+1
B.

Câu 77. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 78. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

Câu 79. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
2

Trang 6/10 Mã đề 1


Câu 80. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim f (x) = f (a).

x→a

x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.

x→a

Câu 81. Giá trị của lim(2x − 3x + 1) là
2

x→1

A. 1.

B. +∞.

C. 0.

Câu 82. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.

C. 1.

D. 2.
D. 3.

Câu 83. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. Năm cạnh.

Câu 85. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

D. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 86. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).

Câu 87. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 2.

D. 3.

Câu 88. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
Câu 89.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z
0

C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).
A.

f (x)dx = F(x) +C ⇒

f (u)dx = F(u) +C. B.

Câu 90.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
12
4

2
6
Câu 91. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 92. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.

Câu 93. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể

theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Trang 7/10 Mã đề 1


Câu 94. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .

9t
Câu 95. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. 0.
D. Vơ số.
Câu 96. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 97. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 1.
C. 3.
D. Vô số.
Câu 98. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B. m =

triệu.
A. m =
3
(1, 01) − 1
3
120.(1, 12)3
100.(1, 01)3
triệu.
D. m =
triệu.
C. m =
3
(1, 12)3 − 1
Câu 99.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

f (x)g(x)dx =


B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 100. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 81.

B. 64.

C. 96.

8
x

D. 82.
x+3
nghịch biến trên khoảng
Câu 101. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 1.
D. 3.

Câu 102. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = [2; 1].
2

Câu 103. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

C. 3.

D. D = (−2; 1).
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 104. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 8.
C. 4.
D. 6.
Câu 105. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 1.
B. 22016 .
C. 0.
D. e2016 .
Trang 8/10 Mã đề 1


1 − 2n
Câu 106. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. 1.
C. − .
3
3
Câu 107. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

D.

2
.
3


x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).

Câu 108. [4-1213d] Cho hai hàm số y =

Câu 109. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 110. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x4 − 2x + 1.
D. y = x + .

A. y = x3 − 3x.
B. y =
2x + 1
x
3
2
Câu 111. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
1 − xy
Câu 112. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√= x + y.



9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
A. Pmin =
21

9
3
9
Câu 113. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 114. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2, 4, 8.
a
1
Câu 115. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 2.
D. 7.
Câu 116. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!

1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
x2
Câu 117. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
Câu 118. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {5}.
D. {3}.
Trang 9/10 Mã đề 1


Câu 119. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là

A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 120. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+1
c+2
c+3
c+2
Câu 121. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. .
D. 9.
2

2
Câu 122. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
A.
.
B.
.
C. −
.
D. − .
25
100
100
16
0 0
0 0 0
Câu 123. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 124. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a



a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
3
25
5
25
Câu 125. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m > 0.
D. m < 0.


4n2 + 1 − n + 2
Câu 126. Tính lim
bằng
2n − 3
3
A. 1.
B. 2.

C. +∞.
D. .
2
Câu 127. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 128. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.

D. 2.

Câu 129. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
A. .
B. .
C. 1.
D.
.
2
2
2



Câu 130. Phần thực

phần
ảo
của
số
phức
z
=
2

1

3i lần lượt√l



A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4. A

C

5.

C

6. A

7.

C

8.

9.

C

10.


B

11.

C

12.

B

13. A

14.

B

15. A

16.

C

18.

C

20.

C


17.

B

19.
21.

C

C

22. A

B

23. A

24.

D
D

25.

B

26.

27.


B

28.

29.

B

30.

B
C

31. A

32. A

33. A

34.

C

36.

C

37. A

39.


C

40. A

41.

C

43.

C

C

35.

42.

B

44.

45.

C

46. A
48.


D

47. A
B

49.

B

51.

B

52. A

53.

B

54. A

55.

50.

D

56.

B


57.

58.

B

59.

60.

D

66.

D
B

61.

62. A
64.

C

63.
B

C
B


65.
D

68. A
1

C

67.

B

69.

B


70.

71.

B

D

72.

D


73.

74.

D

75.

D

76.

D

77.

D

78.

D

79. A

C

80.

83. A
D


85.

B

86. A

87. A

88. A

89. A

90. A

91. A

92.

C

81.

82. A
84.

C

93.


B

94.

C

95. A

96.

C

97. A

B

98. A

99.

100. A

101.

D

103.

D


102.

B

104. A

B

C

105.
C

106.

107.

108.

B

109. A

110.

B

111.

B

C

112.

C

113.

D

114.

C

115.

D

117.

D

116.

B

118.
120.
122.
124.


C

119.

B

B

121. A
123.

C
D

B

125. A

126. A

127.

C

128. A

129.

C


130.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×