Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (105)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.13 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.
Z 3
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và
Câu 3. Cho I =

d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 16.
B. P = −2.
C. P = 4.


D. −2 + 2 ln 2.
a
là phân số tối giản. Giá trị
d
D. P = 28.

Câu 4. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
3
2
x
Câu 5. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m √+ 1)2 trên [0; 1] bằng 2
B. m = ±3.
C. m = ± 3.
D. m = ±1.
A. m = ± 2.

Câu 6. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

A. 8.
B. 9.
C. 27.
D. 3 3.
Câu 7. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.

C. 9 mặt.
D. 3 mặt.
Câu 8. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

sin n
.
n

D.

n+1
.
n

!
x+1
Câu 9. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017

.
B. 2017.
C.
.
D.
.
A.
2018
2018
2017
 π π
Câu 10. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 3.
D. 7.
Câu 11. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 12. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.


2
Câu 13. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
D. 7.
2

Câu 14. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.

C. y0 = ln x − 1.

D. y0 = 1 − ln x.

Câu 15. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.
.
B.

.
C.
.
D. a3 .
2
6
3
Trang 1/10 Mã đề 1


Câu 16. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).
Câu 17. Tính lim
x→3

A. 6.

x2 − 9
x−3

C. +∞.

B. 3.

D. (−∞; 1).

D. −3.


Câu 18. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 19. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.

C. 5.

D. 2.

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
4a3 3
a3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3

3
6
2

Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
A. √ .
C. 3 .
e
2e
2 e

D.

1
.
e2

Câu 22. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 23. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =

.
C. f 0 (0) = 10.
ln 10
n−1
Câu 24. Tính lim 2
n +2
A. 2.
B. 1.
C. 3.
Câu 25. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.
x2 − 12x + 35
Câu 26. Tính lim
x→5
25 − 5x
2
A. .
B. −∞.
5
Câu 27. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

D. f 0 (0) = 1.

D. 0.

C. 4.


D. 8.

2
C. − .
5

D. +∞.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

0 0 0 0
0
Câu 28.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2

7
3
2

Câu 29. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.

Câu 30. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. m ≥ 0.
D. − < m < 0.
4
4
Trang 2/10 Mã đề 1


Câu 31. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
x2 +x−2

Câu 32. [1] Tập xác định của hàm số y = 4

A. D = [2; 1].
B. D = R \ {1; 2}.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

C. D = (−2; 1).

D. D = R.



Câu 33. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 34. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).
2n + 1
Câu 35. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.

D. (1; +∞).

D. 0.


Câu 36. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

Câu 37. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.

D. Cả hai đều đúng.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

3
2
Câu 38. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 − 4 2.

B. 3 + 4 2.
C. −3 − 4 2.

D. S = 135.

D. −3 + 4 2.

2

Câu 39. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 2 − log2 3.

Câu 40. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
B. y0 =
.
C.
.
D. y0 =
.
A. y0 = .
x
x ln 10

10 ln x
x
9x
Câu 41. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2
a2 + b2

a2 + b2
2 a2 + b2
!
5 − 12x
Câu 43. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
1 − n2
bằng?
Câu 44. [1] Tính lim 2
2n + 1
1
1
A. .
B. .
3
2
Câu 45.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.

3
e

1
C. − .
2

D. 0.

!n
5
C. − .
3

!n
5
D.
.
3
Trang 3/10 Mã đề 1


1 − 2n
Câu 46. [1] Tính lim
bằng?
3n + 1
1
B. 1.
A. .
3


C.

2
.
3

2
D. − .
3

Câu 47. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
5
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 48. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 49. [1-c] Giá trị của biểu thức
A. 2.

log7 16
log7 15 − log7

B. −2.

15
30

bằng
C. −4.

D. 4.

Câu 50. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và



√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
Câu 51. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. 2.
D. .
2
2
Câu 52. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.

D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 53. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
9
1
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 54. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.

C. 6.

D. 8.

Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3

3
3
A. 10a .
B. 20a .
C. 40a .
D.
.
3
Câu 56. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Câu 57. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Trang 4/10 Mã đề 1


2

2

sin x
Câu 58.
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất √
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.



x=t




Câu 59. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
4x + 1
Câu 60. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.

C. 4.
D. −4.

Câu 61. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 62. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
=
=
.
B. =
=

.
A.
2
2
2
2
3
−1
x y z−1
x−2 y−2 z−3
=
=
.
D. = =
.
C.
2
3
4
1 1
1
Câu 63. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 5 mặt.
[ = 60◦ , S O
Câu 64. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S

√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
q
Câu 65. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 66. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (2; 4; 4).

D. (1; 3; 2).
cos n + sin n
Câu 67. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
x+3
Câu 68. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 69. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 3.
B. 1.

C.
.
D. 2.
3
Trang 5/10 Mã đề 1


Câu 70. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.

C. 30.

Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).

D. 20.
D. (−∞; 6, 5).

Câu 72. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 73. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).

C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 74. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 75. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
!4x
!2−x
3
2


Câu 76. Tập các số x thỏa mãn

3 # 2
"
!
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .
5
3
3
5
Câu 77. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 78. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 7.
D. 2.
Câu 79. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ

ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 2
a3 3
a3 3
a3 6
A.

.
B.
.
C.
.
D.
.
16
48
24
48
7n2 − 2n3 + 1
Câu 81. Tính lim 3
3n + 2n2 + 1
2
7
A. 1.
B. - .
C. .
D. 0.
3
3
Trang 6/10 Mã đề 1


Câu 82. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. [−3; 1].

D. (−∞; −3].
Câu 83. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R \ {0}.

Câu 84. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. 3.
D. −3.
Câu 85. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.

D. Hình tam giác.

Câu 86. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 87. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.
C. 12.



x
+
3
+
6√− x
Câu 88. Tìm giá trị lớn nhất của hàm
số
y
=

A. 3.
B. 2 + 3.
C. 3 2.

D. 20.

D. 2 3.

1

Câu 89. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
Câu 90. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − .

A. −e.
B. − .
2e
e

D. D = R \ {1}.
D. −

1
.
e2

Câu 91.
Z Trong các khẳng định sau, khẳng định nào sai? Z

1
dx = ln |x| + C, C là hằng số.
Z
Z x
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
tan x + m
Câu 92. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1

 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
A.

0dx = C, C là hằng số.

B.

Câu 93. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

D. |z| =

√4
5.

Câu 94. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
A.

.
B. .
C.
.
D.
.
9
9
9
9
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
4
2

2
Câu 96. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
3
3
4a 3
2a 3
2a
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 7/10 Mã đề 1


Câu 97. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn

ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)30
C 20 .(3)20
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
2
Câu 98. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1

A. 7.
Câu 99.

B. 0.

C. 9.

D. 5.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3


0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 100. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + .
D. T = e + 3.
e
e
Câu 101. [1]! Tập xác định của hàm số! y = log3 (2x + 1) là
!
!
1
1
1
1
; +∞ .

B. −∞; .
C. −∞; − .
D. − ; +∞ .
A.
2
2
2
2
Câu 102. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
x+1
Câu 103. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. 3.
C. .
D. .
4
3
Câu 104. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
Câu 105. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 7
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
32
8
16

x2 + 3x + 5
Câu 106. Tính giới hạn lim
x→−∞

4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4

Câu 107. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2
Câu 108. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.

C. 30.


D. 8.
Trang 8/10 Mã đề 1


Câu 109. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 3.

D. x = 2.

Câu 110. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Câu 111. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích

hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 112. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 113. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 114. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.


D. 2.

Câu 115. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 116. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
3
2
Câu 117. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 3.
C. 8.
D. 6.
!2x−1
!2−x
3
3

Câu 118. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Câu 119. Tính lim
A. 2.

2n2 − 1
3n6 + n4
B. 0.

C. 1.

Câu 120. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −2.
Câu 121.
√ Thể tích của tứ diện đều
√cạnh bằng a
a3 2
a3 2
A.
.
B.

.
2
12
Câu 122. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

D.

2
.
3

D. m = −1.


a3 2
C.
.
6


a3 2
D.
.
4

C. {3; 4}.

D. {5; 3}.


[ = 60◦ , S O
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Trang 9/10 Mã đề 1


Câu 124. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 5.
C. 4.
D. 2.
x−3
Câu 125. [1] Tính lim

bằng?
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D. −∞.
1
bằng
Câu 126. [1] Giá trị của biểu thức log √3
10
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
Câu 127. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C. 5.
D.
.

17
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 128. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Câu 129. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

Câu 130. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC



3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


3.

2. A

C

4.

C

5.

D

6.

D

7.

D

8.

D

9. A

10. A

D

11.
13.

12. A

B

14.

15. A

16.

17. A

18.

19.

D

D

22. A
24.

23. A
B


D

26. A
C

27.
29.

C

20. A

B

21.
25.

B

C

28.

B

30. A
32.

31. A

33.

D

34. A

35.

B

36. A

37.

B

38.

39.

D

D

40.

D
B

41. A


42.

C

43. A

44.

C

45. A

46.

47.

D

D

48.

C

49.

C

50.


B

51.

C

52.

B

53.

C

54. A

55.

B

56. A

57.

B

58. A

59.


B

60.

61. A

62.

63. A

64.

65.

C
D
C

66. A

C

67. A

68.
1

C



69.

D

71. A
D

73.
75. A

70.

B

72.

B

74.

B

76.

77.

C

78.


D

79.

B

80.

81.

B

82.

D
B
C

84.

83. A
D

85.

D

86.


C
C

87.

B

88.

89.

B

90.

B
B

91.

D

92.

93.

D

94. A


95.

96.

B

97.

D

99.

98.

C

101.

D

D

102.

D

C

104. A


105.

C

106.

107. A
B

111. A
113.

D

C

100.

103.

109.

D

D

108.

C


110.

C

112.

C

114.

B
B

115.

B

116.

117.

B

118.

C

119.

B


120.

C

121.

B

122.

123.

C

125. A
127.
129.

D

124.

C

126.

C

128.


B

130. A

2

B

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×