Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (208)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.42 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

2n − 3
bằng
Câu 1. Tính lim 2
2n + 3n + 1
A. 0.
B. 1.

C. −∞.

D. +∞.

Câu 2. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 3. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.


C. 0, 7%.
D. 0, 6%.
x−3 x−2 x−1
x
Câu 4. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 5. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 30.

D. 20.


Câu 7. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
√3
4
Câu 8. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
7
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .


Câu 9. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng



3a
3a 58
3a 38
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 10. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .

D. 4.
2
8
4
2

Câu 11. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 7.
2
2
2
1 + 2 + ··· + n
Câu 12. [3-1133d] Tính lim
n3
2
A. +∞.
B. 0.
C. .
3

D. 5.

D.

1
.
3


2

Câu 13. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 3 − log2 3.
Trang 1/11 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.

Câu 14. [3-1226d] Tìm tham số thực m để phương trình

B. m < 0.
!2x−1
!2−x
3
3
Câu 15. Tập các số x thỏa mãn


5
5
A. (−∞; 1].

B. [1; +∞).
C. [3; +∞).
D. (+∞; −∞).
p
ln x
1
Câu 16. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
9
3
3
9
1
Câu 17. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 2.
D. 4.

A. m ≤ 0.

Câu 18. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
=
.
B. = =
.
A. =
2
3
−1
1 1
1
x−2 y−2 z−3

x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2
Câu 19. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 20. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 21. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.


D. Chỉ có (II) đúng.

Câu 22. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 23. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x) + C, với C là hằng số.
2

Câu 24. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 2 .
B. 3 .
C. 3 .
e
e
2e

D.

1
√ .
2 e
Trang 2/11 Mã đề 1


Câu 25. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



5a3 3
4a3 3

2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 26. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Ba mặt.

D. Hai mặt.

Câu 27. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (4; 6, 5].

D. (−∞; 6, 5).

Câu 28. Hàm số nào sau đây khơng có cực trị
x−2

1
A. y =
.
B. y = x + .
2x + 1
x

C. y = x3 − 3x.

D. y = x4 − 2x + 1.

Câu 29. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
2
1
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 30. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .

B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
4x + 1
bằng?
Câu 31. [1] Tính lim
x→−∞ x + 1
A. −1.
B. 4.
C. −4.
D. 2.
a
1
Câu 32. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 34. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.

B. −2.
C. −4.
D. −7.
27
Câu 35. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 36. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 37. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.


C. 4.

D. 6.
Trang 3/11 Mã đề 1


Câu 38. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 3.
C. .
D. 1.
A. .
2
2
Câu 39. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

C. 7.

D. 0.

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối



√ chóp S .ABCD là
a3 3
a3 3
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Câu 41. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
Câu 42. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R.

x2 +x−2

C. Khối tứ diện đều.

D. Khối lập phương.


C. D = (−2; 1).

D. D = R \ {1; 2}.



Câu 43. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 44. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 45. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.
Câu 46. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 2.

D. Hai cạnh.

x2 −4x+5


= 9 là
C. 5.

D. 3.

Câu 47. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
! x3 −3mx2 +m
1
Câu 48. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Câu 49. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
1637
A.
.
B.

.
C.
.
D.
.
4913
4913
68
4913
Câu 50. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).

Câu 51. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 52. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2

2
Trang 4/11 Mã đề 1


Câu 53.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 5.
C. 2.
D. 1.
A. 3.
1
Câu 54. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. −3.
C. − .
D. .
3
3
x−1
Câu 55. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √

A. 2 3.
B. 2.
C. 6.
D. 2 2.
Câu 56. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 57. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. Vô nghiệm.

Câu 58. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e

x+2
Câu 59. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 1.
0

D. m =

1 − 2e
.
4e + 2

D. 3.
2

x
Câu 60. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = e, m = 0.
D. M = , m = 0.
e
e

Câu 61. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 62. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a

√3. Thể tích khối chóp S .ABCD là
3
3
a 3
a3
a 3
.
B.
.
C. a3 .

D.
.
A.
3
9
3
Câu 63. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim k = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 64. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+1
c+3

c+2
c+2
Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
q
Câu 66. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Trang 5/11 Mã đề 1


Câu 67. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
D. 4 mặt.
log(mx)
Câu 68. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.

B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 69. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > −1.
D. m > 0.
x
9
Câu 70. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
x
x
x
Câu 71. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là

3
10a 3
A. 40a3 .
B. 10a3 .
C.
.
D. 20a3 .
3
Câu 73. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.

D. −5.

Câu 74. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

D. 10.

2

C. 6.



Câu 75. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.

B. Vô số.
C. 64.
D. 63.
Câu 76.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
!0
Z
C.
f (x)dx = f (x).
A.

f (u)dx = F(u) +C. B.

Z

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
D.
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 77. Giá trị của lim(2x2 − 3x + 1) là
x→1


A. 0.

B. 1.


2
4n + 1 − n + 2
bằng
Câu 78. Tính lim
2n − 3
A. 2.
B. 1.

C. +∞.

D. 2.

3
.
D. +∞.
2
x
Câu 79.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. .

C. 1.
D. .
2
2
2
Câu 80.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
5
5
1
4
A.
.
B.
.
C. − .
D.
.
e
3
3
3

Câu 81. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.

D. 2 nghiệm.

Câu 82. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 6.
D. 108.
C.

Trang 6/11 Mã đề 1


Câu 83. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
B.
.
A. √ .
n
n

C.

n+1
.
n

Câu 84. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.

C. e.
Câu 85. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n

1
.
n

D.

D. 4 − 2 ln 2.

B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.

Câu 86. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 87.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z

A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 88. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. −1.

B. 4.

C. 6.

Z

6


3

3x + 1

. Tính

1

f (x)dx.
0

D. 2.

Câu 89. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 90. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.


Câu 91.
Tìm
giá
trị
lớn

nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 3 2.
B. 2 + 3.
C. 3.

D. m , 0.

D. 2 3.

Câu 92. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
Câu 93. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.

B. 8.

C. 30.

D. 12.

Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9

9
3
9
Trang 7/11 Mã đề 1


Câu 95. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 5
a3 15
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 96. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.

D. m < 3.
d = 60◦ . Đường chéo
Câu 97. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3

4a
2a3 6
a3 6
6
D.
.
B.
.
C. a3 6.
.
A.
3
3
3
x2 − 3x + 3
đạt cực đại tại
Câu 98. Hàm số y =
x−2
A. x = 2.
B. x = 1.

C. x = 3.
D. x = 0.
2
x − 5x + 6
Câu 99. Tính giới hạn lim
x→2
x−2
A. −1.
B. 0.
C. 5.
D. 1.

Câu 100. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.
Câu 101. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3
a3 3
a 3
3
.
B.

.
C. a .
D.
.
A.
6
3
2
0 0 0 0
Câu 102.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7


Câu 103. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
Câu 104. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 105. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

[ = 60◦ , S A ⊥ (ABCD).
Câu 106. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3

a 2
a 3
a3 2

3
.
C.
.
D.
.
A. a 3.
B.
4
6
12
Câu 107. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −2.

D. −4.

Câu 108. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

D. 6.

C. 10.

Câu 109. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −5.


D. −7.
Trang 8/11 Mã đề 1


log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.

Câu 110. [1-c] Giá trị biểu thức
A. −8.

Câu 111. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.

C. +∞.

D. 4.
D. 1.

Câu 112. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 2.

D. 0, 5.
Câu 113. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 114. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
23
13
.
B. − .
C.
.
D. −
.
A.
100
16
25
100

Câu 115. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.



√ tích khối chóp S .ABC3 √
a 6
a3 6
a3 2
a3 6
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 116. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 20 triệu đồng.
Câu 117. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
!
1
1

B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 118. Tính lim
x→3

A. −3.

x2 − 9
x−3

B. +∞.

D. 3.
!
3n + 2
2
Câu 119. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 4.

D. 3.
Câu 120. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.

C. 6.

C. 6.

D. 4.

Câu 121. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 122. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. 5.

D. 4.
Trang 9/11 Mã đề 1


Câu 123. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu

khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 124. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = S h.
A. V = S h.
3
2
Câu 125. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 1.

D. V = 3S h.
D. 3.

Câu 126. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a


3
3
a
a 15

a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
3
25
5
25
Câu 127. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
D. (1; −3).
log 2x
Câu 128. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
.
B. y0 =
.

C. y0 = 3
.
D. y0 =
A. y0 = 3
.
3
x ln 10
2x ln 10
2x ln 10
x3
[ = 60◦ , S O
Câu 129. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
A. a 57.
.
C.
.
D.
.
19
17
19

1
Câu 130. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

C

5. A

B

4.

B

6.

7.

9.

2.

10.

B
B

14.

15.

B

16.

17.

B

18.

19.

B

20.

21.


C
D

12.

C

13.

23.

D

8.

C

11.

C

D

22.

B

C
D

B
D
B

24. A

25. A

C

26.
C

27.

28. A

29.

B

30.

C

31.

B

32.


C

34.

B

35.

36.

D

37.

38. A

39.

40. A

41.

42.
44.

B
C

46. A

48.
50.

D
C

52. A
54.

D

C

43.

B

45.

B

47.

D

49.

D

51.


C

53.

C

59. A

C

61.
D

62.
C

66.
68.

B

57. A

58.

64.

D


55. A

C

56. A
60.

B

D

63.

D

65.

D

67.

D

69.

C
1

C


C


C

70.
72.
74.

D
B

73.

D

77. A
79.

B

80.

C

81.

D

82. A


D

83.

84.

C

85.

C
D

86.
88.

D

75. A

76. A
78.

71.

D

87. A


B

C

89.

90.

D

91. A

92.

D

93. A

94.

D

95. A

96.

B

97.


98.

B

99. A

100.

D

101.

102.

B

103.

104.

B

105.

106.

B

107.


108.

C

D

D
B
D
C

109.

B

110. A

111.

B

112. A

113.

114.

D

115.


C
B

116.

C

117.

C

118.

C

119.

C

120.

C

121.

C

122.


123.

D

124. A
126.

125.
B

B

127.

128. A
130.

D

129.
B

2

C
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×