TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tìm
√ giá trị lớn nhất của hàm số y =
A. 2 + 3.
B. 3.
√
√
x+3+ 6√
−x
C. 3 2.
√
D. 2 3.
Câu 2. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
2,4
Câu 3. [1-c] Giá trị của biểu thức 3 log0,1 10 bằng
A. 72.
B. −7, 2.
C. 7, 2.
D. 0, 8.
Câu 4. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
D. −5.
Câu 5. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
√
Câu 6. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3
a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3
4
12
Câu 7. Cho
Z hai hàm y Z= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu
f 0 (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
!
!
!
4x
1
2
2016
Câu 8. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 2017.
C. T =
.
D. T = 1008.
2017
Câu 9. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 0.
D. 22016 .
Câu 10. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. log2 2020.
D. 13.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√
√ S .ABCD là
3
3
3
√
a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 12. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Trang 1/10 Mã đề 1
Câu 13. [1-c] Giá trị của biểu thức
A. −2.
log7 16
log7 15 − log7
B. −4.
15
30
bằng
C. 4.
D. 2.
Câu 14. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 15. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
Câu 16. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 17.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
4
6
Câu 18. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
√
a3 2
C.
.
12
√
a3 2
D.
.
2
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 19. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log 14 x.
C. y = log √2 x.
D. y = log π4 x.
Câu 20.
! định nào sau đây là sai?
Z Các khẳng
0
f (x)dx = f (x).
A.
Z
C.
f (x)dx = F(x) +C ⇒
Z
B.
Z
f (u)dx = F(u) +C. D.
Z
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 21. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m ≥ 3.
D. m < 3.
Câu 22. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.
.
2
3
2
Câu 23. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 12.
D. 27.
0 0 0 0
0
Câu 24.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
3
2
d = 300 .
Câu 25. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3
√
3a 3
a 3
A. V = 6a3 .
B. V =
.
C. V =
.
D. V = 3a3 3.
2
2
Câu 26. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 2/10 Mã đề 1
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 27. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
4a3 3
2a3 3
a3 3
5a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
cos n + sin n
Câu 28. Tính lim
n2 + 1
A. +∞.
B. 1.
C. 0.
D. −∞.
1
Câu 29. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 30. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 2.
7n − 2n3 + 1
Câu 31. Tính lim 3
3n + 2n2 + 1
2
7
B. - .
A. .
3
3
Câu 32. Cho hàm số y = |3 cos x − 4 sin x + 8| với
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 4.
D. 1.
C. 0.
D. 1.
2
x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
√
C. 8 2.
Câu 33. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+2
c+3
Câu 34. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R \ {1}.
2x + 1
Câu 35. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
2
Câu 36. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
n2 + n + 1
.
B. un =
.
C. un =
.
A. un =
n2
5n − 3n2
(n + 1)2
D. 16.
D.
3b + 3ac
.
c+1
D. D = R.
D. 2.
D. un =
1 − 2n
.
5n + n2
Câu 37. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Trang 3/10 Mã đề 1
√
x2 + 3x + 5
x→−∞
4x − 1
B. 0.
Câu 38. Tính giới hạn lim
1
.
4
Câu 39. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.
A. 1.
Câu 40. Tính lim
A. 0.
1
D. − .
4
C.
D. 13.
2n2 − 1
3n6 + n4
B. 1.
C. 2.
D.
Câu 41. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
2
.
3
D. [1; 2].
Câu 42.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
p
ln x
1
Câu 43. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
2
2
sin x
Câu 44. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√ =2
√ lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
1
Câu 45. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 46. Dãy số nào có giới hạn bằng 0?!
n
n3 − 3n
−2
A. un =
.
B. un =
.
n+1
3
C. un = n − 4n.
2
!n
6
D. un =
.
5
x=t
Câu 47. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 48. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 3
a3 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
48
8
24
2−n
Câu 49. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.
C. −1.
D. 0.
Câu 50. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.
Câu 51. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Khơng thay đổi.
B. Tăng lên n lần.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Trang 4/10 Mã đề 1
Câu 52. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 1.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 53. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
2mx + 1
1
Câu 54. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
Câu 55. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 56. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
x2 − 12x + 35
Câu 57. Tính lim
x→5
25 − 5x
A. +∞.
B. −∞.
2
C. − .
5
Câu 58. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D.
2
.
5
D. Hình lập phương.
Câu 59. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 60.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 61. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. √ .
B.
.
n
n
C.
1
.
n
Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
D.
n+1
.
n
D. Hai mặt.
Câu 63. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
2
3
6
Câu 64. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Trang 5/10 Mã đề 1
Câu 65. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
x2 − 9
Câu 66. Tính lim
x→3 x − 3
A. 6.
B. +∞.
C. {4; 3}.
D. {5; 3}.
C. 3.
D. −3.
!
Câu 67. [2] Phương trình log x 4 log2
A. Vơ nghiệm.
B. 3.
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 1.
D. 2.
Câu 68. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vô số.
D. 1.
Câu 69. [4] Xét hàm số f (t) =
Câu 70. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (1; −3).
D. (0; −2).
x+3
nghịch biến trên khoảng
Câu 71. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 72. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.
C. 30.
D. 8.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 73. Tìm m để hàm số y =
x+m
A. 34.
B. 26.
C. 67.
D. 45.
√
Câu 74. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
a 38
3a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 75. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 4.
D. 2.
Câu 76. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 77. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 4.
D. 10.
Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Bốn cạnh.
Câu 79. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2
√
ab.
Trang 6/10 Mã đề 1
Câu 80. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
Câu 81. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 82. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
3
3
a 3
a3
a
A.
.
B.
.
C. a3 .
D.
.
6
3
2
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
1
Câu 84. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).
D. D = (−∞; 1).
Câu 85. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
D. {3; 3}.
C. {4; 3}.
Câu 86. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 27.
B. 8.
C. 3 3.
D. 9.
Câu 87. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 4.
D. 6.
Câu 88. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
1 − 2n
Câu 89. [1] Tính lim
bằng?
3n + 1
2
2
1
B. .
C. − .
D. 1.
A. .
3
3
3
Câu 90. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.1, 03
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.(1, 01)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
3
Câu 91. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 2
a 5
a 7
A.
.
B.
.
C.
.
D.
.
32
4
16
8
Câu 92. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A.
.
B. y0 =
.
C. y0 = .
D. y0 =
.
10 ln x
x
x
x ln 10
2
Câu 93. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 5.
D. 7.
Trang 7/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
2a
a
a
B.
.
C.
.
D. .
A. .
3
3
3
4
Câu 95. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Câu 94. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 1.
C. 0.
D. 2.
Câu 96. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B.
.
C. −2.
D. −4.
27
Câu 97. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).
D. (1; +∞).
Câu 98. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 2.
C. 1.
D. .
2
2
0 0 0 0
Câu 99. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 100. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 102. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
[ = 60◦ , S O
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 104. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e
Trang 8/10 Mã đề 1
Câu 105. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.
D. 3.
Câu 106. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
log 2x
là
Câu 107. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 108. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 110. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
Câu 111. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 0.
D. 3.
Câu 112. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m < 0.
D. m = 0.
Câu 113. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 15
a 6
a3 5
3
.
B.
.
C. a 6.
.
A.
D.
3
3
3
Câu 114. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
2
x − 3x + 3
Câu 115. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
C. x = 3.
D. x = 1.
Câu 116. √
Tính mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √
4
B. |z| = 5.
C. |z| = 5.
A. |z| = 5.
√
D. |z| = 2 5.
Câu 117. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
8
Câu 118. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 96.
D. 81.
q
Câu 119. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
x+2
Câu 120. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Trang 9/10 Mã đề 1
Câu 121. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) − g(x)] = a − b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 122. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
3
2
x
Câu 123. [2]
√ Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 124. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 5.
C. 68.
D.
.
17
Câu 125. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 30.
D. 20.
Câu 126. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
π π
Câu 127. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 128. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
Câu 129. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
12
36
6
Câu 130. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
6
9
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
3.
2. A
B
4.
B
5. A
6.
B
7. A
8.
9.
C
10. A
D
12.
11. A
13.
D
B
14. A
15.
D
16.
C
17.
C
18. A
19.
C
20.
C
21.
C
22.
C
23.
B
24.
C
25.
B
26.
C
28.
C
27.
D
29.
30. A
C
31.
B
32.
D
33.
B
34.
D
36.
D
38.
D
35.
37.
D
B
39. A
40. A
41.
B
42.
D
43.
B
44.
D
45.
B
46.
47.
B
48.
49.
C
50.
51.
C
52.
53. A
D
C
60. A
C
B
D
59.
D
61.
D
D
C
63.
64.
C
65.
66. A
C
57.
62.
68.
D
54.
56.
58.
B
B
67.
D
69.
1
C
B
70.
D
72.
74.
73. A
C
B
75.
76.
78.
71. A
D
77. A
79.
B
80.
B
81.
C
82.
B
D
D
83. A
84.
C
85.
D
86.
C
87.
D
88. A
90.
89.
B
92.
D
91.
D
93.
D
D
94.
C
95.
96.
C
97.
98.
D
106.
103.
C
B
108. A
110.
C
101. A
B
104.
B
99.
B
100.
102.
C
B
105.
D
107.
D
109.
D
111. A
B
112. A
113. A
D
114.
116. A
118.
D
115.
D
117.
D
119.
D
D
120.
C
121.
122.
C
123. A
124.
D
125.
126.
D
127.
128. A
129.
2
D
C
B