Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (296)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.6 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

Câu 2. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 ≤ m ≤ 1.

1
3|x−2|

= m − 2 có nghiệm


C. 0 < m ≤ 1.

D. 2 ≤ m ≤ 3.

Câu 3. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
Câu 4. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4

4
Câu 5. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 6. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.

.
B.
.
C.
.
D.
.
24
8
24
48
Câu 7. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.


Câu 8. Phần thực √
và phần ảo của số phức

√ z = 2 − 1 − 3i lần lượt l

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 9. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.

B. 3.
C. 1.

D. 2.

Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 1/10 Mã đề 1


Câu 11. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
12
4
12
6
Câu 12. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 13. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (0; 2).

D. (−∞; 0) và (2; +∞).

Câu 14. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 12.
D. 18.
A. 27.
B.
2
Câu 15. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
1 − 2n
Câu 16. [1] Tính lim
bằng?
3n + 1
2
1
2
A. 1.
B. − .
C. .
D. .
3
3
3
Câu 17. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 1.
B. 3.
C. 5.
D. 2.
Z 2
ln(x + 1)
Câu 18. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1

A. −3.
B. 1.
C. 3.
D. 0.
q
2
Câu 19. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 20. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.

C. 2.

D. 3.

Câu 21. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




3
2a 3
5a3 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 22. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 8.
D. 4.
Câu 23. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 24. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị

A. m > −1.
B. m > 1.
C. m ≥ 0.

D. m > 0.
Trang 2/10 Mã đề 1


[ = 60◦ , S O
Câu 25. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 26.
đề nào sau đây
Z [1233d-2] Mệnh Z

Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 27. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn

!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = 0.
D. lim un = .
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 29. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3
3

a3 2

a
a
3
3
A.
.
B. 2a2 2.
C.
.
D.
.
24
24
12
d = 60◦ . Đường chéo
Câu 30. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3

A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 28. [3-1132d] Cho dãy số (un ) với un =

Câu 31. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.
D. 2.
1
Câu 32. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 < m < −1.
Câu 33. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.

Câu 34. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.

C. 6.

D. 10.
Trang 3/10 Mã đề 1


Câu 35. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 12.
D. 20.

Câu 36. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .
3
Câu 37. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.

Câu 38. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 39. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 40. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 41. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.

!
x+1
Câu 42. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Câu 43. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
C. 8.
D. 4.
Câu 44. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = R.
2

D. D = (−2; 1).


Câu 45. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 46. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2

C. un =

1 − 2n
.
5n + n2

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.

C. 1.

D. un =

n2 − 3n
.
n2

Câu 47. [1-c] Giá trị biểu thức
A. 4.

D. 3.

Câu 48. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Trang 4/10 Mã đề 1


Câu 49. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Khơng có.
D. Có hai.
Câu 50. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9

3
B. .
C. 3.
D. 1.
A. .
2
2
Câu 51. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.
D. 72.
Câu 52. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
Câu 53. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là


3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
2
4
!
5 − 12x
Câu 54. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 2.
C. Vơ nghiệm.
D. 3.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 55. [3-1214d] Cho hàm số y =

x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
Câu 56. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
B.
.
C.
.
D. 8 3.
3
3
x−3 x−2
Câu 57. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.

C. 3.
D. 1.
x+1
bằng
Câu 58. Tính lim
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
4
3
Câu 59. Phát biểu nào sau đây là sai?
1
1
A. lim k = 0.
B. lim = 0.
n
n
C. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
Câu 60. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B. −7.
C.
.
D. −4.

27
Câu 61. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Z 1
Câu 62. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.

B. 1.

C.

1
.
2

D.

1
.
4
Trang 5/10 Mã đề 1


Câu 63. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 64. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 65. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 66. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3

1
D. V = S h.
2


d = 120◦ .
Câu 67. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 4a.
D. 3a.
2
log 2x
Câu 68. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
.
C. y0 =
.
D. y0 = 3
.
A. y0 =
.
B. y0 = 3
3
3
x

x ln 10
2x ln 10
2x ln 10
x−3 x−2 x−1
x
Câu 69. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. [2; +∞).
D. (−∞; 2).
Câu 70. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 8 m.
D. 24 m.
Câu 71. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.


D. {3; 5}.

Câu 72. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).

D. (2; +∞).

Câu 73. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 74. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 75. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.

B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 76. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 5.
D. 0, 3.
un
Câu 77. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.
Trang 6/10 Mã đề 1


Câu 78. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
8
7

5
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
A.
3
3
3
Câu 79. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

C. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 80. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.

D. Phần thực là −3, phần ảo là −4.
Câu 81. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D. 8.
Câu 82. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 83. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 = x
.
2 . ln x

C. y0 = 2 x . ln 2.

D. y0 =

1
.
ln 2

! x3 −3mx2 +m
1
Câu 84. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =

nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).
C. m = 0.
D. m ∈ R.
Câu 85. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −6.
2

D. −5.

Câu 86. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.
D. 10.



x=t




Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
x
x
Câu 88. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.

B. m > 3.
C. m < 3.
D. m ≥ 3.
!2x−1
!2−x
3
3
Câu 89. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).
Câu 90. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.

D. x = −5.

Câu 91. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.

D. D = R \ {1}.

C. D = R \ {0}.


Trang 7/10 Mã đề 1





x = 1 + 3t




Câu 92. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = −6 − 5t
z = 1 + 5t

z = 6 − 5t
z = 1 − 5t
Câu 93. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
−1.
A. 0 .
B.


C. (− 2)0 .

D. (−1)−1 .

Câu 94. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 95. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
2
Câu 96. Tính mơ đun của số phức z biết

√ (1 + 2i)z = 3 + 4i. √
C. |z| = 5.
A. |z| = 5.
B. |z| = 2 5.

D. |z| =

√4
5.

Câu 97. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với √

đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √

a3 3
a3 3
A.
.
B. a3 3.
C.
.
3
6
12 + 22 + · · · + n2
Câu 99. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. .
3
3
2
1−n
bằng?
Câu 100. [1] Tính lim 2
2n + 1
1
1
A. − .
B. 0.

C. .
2
3
Câu 101. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].

⊥ (ABCD). Mặt bên (S CD)

2a3 3
D.
.
3

D. 0.

D.

log23

1
.
2
q
x+ log23 x + 1+4m−1 =


D. m ∈ [0; 1].

Câu 102. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Trang 8/10 Mã đề 1


Câu 103. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC

A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
Câu 104. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. .
A.
n
n

1
C. √ .
n

D.

sin n
.
n

Câu 105. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.


C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
D.
a
1
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
Câu 107. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
2
1
.
B.
.
C. .
D. .
A.
10
10
5
5

Câu 108. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.
D. Khơng thay đổi.
Câu 109. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. − < m < 0.
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
4
4
2
2
Câu 110. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2
Câu 111. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 112. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 113. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 9/10 Mã đề 1


Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.
D. Cả hai đều đúng.
ln x p 2
1
Câu 114. Gọi F(x) là một nguyên hàm của hàm y =

ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
3
9
Câu 115. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 116. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 117. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).

C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
log(mx)
Câu 118. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 119. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. +∞.

Câu 120. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.

C. 0.

D. 1.

C. 12.

D. 10.

Câu 121. Hàm số nào sau đây khơng có cực trị

x−2
1
A. y =
.
B. y = x4 − 2x + 1.
C. y = x + .
D. y = x3 − 3x.
2x + 1
x
Câu 122. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 123. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 124. [1]! Tập xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. −∞; − .
2

2
2

!
1
D. − ; +∞ .
2

Câu 125. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 126. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
3

Câu 127. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .
Câu 128. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.

Trang 10/10 Mã đề 1


n−1
Câu 129. Tính lim 2
n +2
A. 1.
B. 2.

C. 0.

Câu 130. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.

D. 3.
D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.


2. A

5.
7.

6.

C
C

10.

11.

C

12.

13.
15. A

16.

17.

D

18. A


19.

D

20.

23. A

24. A

25. A

26.
D

D
B
C

C

28.

29. A

30. A

31. A

32. A

C

33.

B

22. A

C

27.

D

14.

D

21.

C

8. A

B

9.

C
C


D

36.

37.

D

38. A

39.

D

40.

B

D

34.

35.

41.

D

4.


3. A

42.

C
B

43.

C

44.

C

45.

C

46.

C

47.

B

48.


49.

B

50. A

51. A
53.

52.

57.

56. A

C
B

58.

59.
61.

B

54. A

B

55.


D

D

B

60. A

C

62.

63. A

64. A

65. A

66.

67. A

68.
1

C
C
B



69.

70.

C
D

71.

72.

73. A
B

76.

77.

B

78.

79.

D
C

82.


83.

C

84.
D

85.

86.

C
B
C
B

88.

B

89.

D

80. A

81.

91.


C

74. A

75.

87.

B

D

90. A

C
B

C

92.

93. A

94.

D

95. A

96.


D

97. A

98. A

99. A

100. A

101.
103.

B

111.

C

106.

B

109.

D

104. A
C


105.
107.

102.

C

108. A
C

110. A

B

113. A

112.

D

114.

D

115.

C

116.


B

117.

C

118.

B

119.

C

120.

B

121. A
123.
125.

C
B

127.
129.

D


122.

D

124.

D

126.

D

128.
130. A

C

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×