Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (194)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (159.8 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

!2x−1
!2−x
3
3
Câu 1. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).

C. (+∞; −∞).

D. (−∞; 1].

2

Câu 2. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.



D. 8.

Câu 3. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
Câu 4. Tính lim
A. 2.

5
n+3

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

B. 3.

C. 0.
D. 1.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 5. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 7.
B. 4.

C. 2.
D. 1.
Câu 6. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
1 + 2 + ··· + n
Câu 7. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. Dãy số un không có giới hạn khi n → +∞.
A. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 8. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 9. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.
D. 3.

Câu 10. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 64.
D. 62.
Câu 11.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
12
6


a3 2
C.
.
4

Câu 12. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).



a3 2
D.
.
2

2

D. D = R \ {1; 2}.
Trang 1/10 Mã đề 1


Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4

Câu 14. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 5.
C. .
5


D. 25.

Câu 15. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Nhị thập diện đều.

Câu 16. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 17. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .

C. m < .
D. m ≤ .
A. m > .
4
4
4
4
Câu 18. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.
Câu 19. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log 14 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
C. y = log √2 x.
Câu 20. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 21. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.


B. 2.

C. 3.

Câu 22. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
log 2x

x2
1 − 2 ln 2x
1 − 2 log 2x
.
B. y0 = 3
.
C. y0 =
x ln 10
x3

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.
D. 2.

Câu 23. [3-1229d] Đạo hàm của hàm số y =
A. y0 =


1
.
2x3 ln 10

Câu 24. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
Câu 25. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
Câu 26. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 1 nghiệm.
B. 3 nghiệm.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.


D. S = 135.

C. Khối bát diện đều. D. Khối 12 mặt đều.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. Vô nghiệm.
D. 2 nghiệm.
Trang 2/10 Mã đề 1


Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 28. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. 9.
D. .
A. 6.
B. .
2
2
Câu 29. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng

1
1
1
A. 4.
B. .
C. .
D. .
2
4
8
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 30. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. −2.
C. 1.
D. 0.
p
ln x
1
Câu 31. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1

1
A. .
B. .
C. .
D. .
3
9
9
3



x=t




Câu 32. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .

4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 33. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 2
a2 7
a 5
.
B.
.
C.
.
D.

.
A.
16
32
4
8
Câu 34. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 35. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
20
40
10
C50
.(3)20
C50
.(3)30
C50
.(3)10
C50
.(3)40
A.
.

B.
.
C.
.
D.
.
450
450
450
450
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3

3
Trang 3/10 Mã đề 1


Câu 37. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
1
Câu 38. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 39. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. − .
C. 2.
D. −2.
2
2
Câu 40. Cho số phức z thỏa mãn |z +

√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
Câu 41. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.
D. {4; 3}.

Câu 42. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 62.
D. 63.
3a
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .

B.
.
C. .
D.
.
4
3
3
3
cos n + sin n
Câu 44. Tính lim
n2 + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 45. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
Câu 46. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.
x+2
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 48. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
e
2e
Z 3
x
a
a
Câu 49. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.

B. P = −2.
C. P = 28.
D. P = 16.
Câu 50. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
8a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Trang 4/10 Mã đề 1


Câu 51. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 52. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều

rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 53. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
B.
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
1
Câu 54. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.


Câu 55. [4] Xét hàm số f (t) =

Câu 56. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (0; +∞).

Câu 57. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

D. y0 = 1 − ln x.

C. y0 = 1 + ln x.

Câu 58. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
2n − 3
bằng
Câu 59. Tính lim 2
2n + 3n + 1
A. −∞.
B. +∞.

C. 1.


Câu 60. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 2.

D. 0.
D. 0.

Câu 61. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 62. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
9
12
4
2
Câu 63. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 5/10 Mã đề 1


C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
x2 − 5x + 6
Câu 64. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.

C. 5.

D. −1.

Câu 65. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.

D. Tăng gấp 8 lần.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 66. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. −1.

B. 2.

C. 4.

D. 6.

Câu 67. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.

Câu 68. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5

5
C. [3; 4).
D.
;3 .
A. (1; 2).
B. 2; .
2
2
Câu 69. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
a3 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
2

3
3
Câu 70. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 3.
C. 0, 2.
D. 0, 5.
Câu 71. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 14.
D. ln 12.
Câu 73. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.
C. .
3

3
Câu 75. Biểu thức nào sau đây khơng
√ 0 có nghĩa

−3
−1
A. 0 .
B. (− 2) .
C.
−1.

D. x = −5.
D. −3.
D. (−1)−1 .

Câu 76. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 77. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. −1.

D. 6.

Câu 78. Khối đa diện đều loại {3; 4} có số cạnh

A. 12.
B. 10.

D. 8.

C. 6.

Trang 6/10 Mã đề 1


Câu 79. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
2
2
2

!
1
D. −∞; − .
2
tan x + m
Câu 80. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng

m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 81. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −4.

D. −2.

Câu 82. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3

A.
=
=
.
B. =
=
.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
3
4
x−1 y z+1
Câu 83. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 84. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.
4

Câu 85. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
7
5
2
A. a 3 .
B. a 3 .
C. a 3 .

√3

D. 8 mặt.
a2 bằng
5

D. a 8 .


Câu 86. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 4.

Câu 87. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2
A. 1.
B. Vô nghiệm.
C. 3.
x−3

x−2

D. 3.
x−3

− 3.3

x−2

+ 6 = 0 là
D. 2.


Câu 88. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B. 3.
C. 2.
D.
.
3

Câu 89. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
3
A.

.
B.
.
C. a 3.
D.
.
3
4
12
Trang 7/10 Mã đề 1


Câu 90.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

f (x)g(x)dx =

B.
Z
D.


f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 91. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Câu 92. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.

x2 + 3x + 5
Câu 93. Tính giới hạn lim

x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
Câu 94. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 3.
Câu 95. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 = .
B. y0 =
.
x
x ln 10

C. y0 =

ln 10
.
x

Câu 96. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 9 mặt.
C. 4 mặt.

D. 2.

D.

1
.
10 ln x

D. 3 mặt.

Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 2
a 3
.
B.
.
C. a3 3.
.

D.
A.
2
4
2
Câu 98. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.

C. 10.

D. 6.

Câu 99. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
2

Câu 100. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. 2 .
B. √ .
C. 3 .
e
e
2 e


D.

1
.
2e3

[ = 60◦ , S O
Câu 101. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
Câu 102. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng

(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Trang 8/10 Mã đề 1


Câu 103. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].

log23

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 104. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + 1.

D. T = e + .
e
e
0 0 0 0
Câu 105. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y

A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 107. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. −7.
B. 6 2.
C. −6 2.
D. 7.
Câu 106. [3-12217d] Cho hàm số y = ln

Câu 108. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC)
tích khối chóp S .ABC là √

√ một góc bằng 60 . Thể
3
a3
a3 3
a3 3
a 3
.
B.
.
C.
.

D.
.
A.
4
4
12
8
Câu 109. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
2
3
! x3 −3mx2 +m
1
nghịch biến trên
Câu 110. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ (0; +∞).

C. m ∈ R.
D. m = 0.
Câu 111. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.

C. 12.

Câu 112. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. 20.

D. Khối 20 mặt đều.
π
Câu 113. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 4.
C. T = 2.
D. T = 3 3 + 1.
Câu 114. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.

C. n lần.
D. n2 lần.
Câu 115. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 16 m.
D. 24 m.
Câu 116. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.

C. D = (0; +∞).
D. D = R \ {0}.
log(mx)
Câu 117. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Trang 9/10 Mã đề 1





x = 1 + 3t





Câu 118. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x

=
−1
+
2t
x
=
1
+
3t
x = −1 + 2t
















A. 
.
B. 
D. 

y=1+t
y = −10 + 11t . C. 
y = 1 + 4t .
y = −10 + 11t .
















z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
z = 6 − 5t
Câu 119. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Câu 120. [4-1245d] Trong tất cả

√ các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 2.
D. 2.
A. 1.
B. 10.
Câu 121. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 10 cạnh.
log2 240 log2 15
Câu 122. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.

D. 11 cạnh.

D. 1.

Câu 123. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
Câu 124. Hàm số y =
A. x = 1.

B. Chỉ có (I) đúng.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

C. x = 0.

D. x = 3.

C. 5.

D. 9.

Câu 125. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.


B. 7.

Câu 126. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 127. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu
Z
C. Nếu

g(x)dx thì f (x) = g(x), ∀x ∈ R.


f 0 (x)dx =

Z

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 128. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).

D. (−1; −7).
Trang 10/10 Mã đề 1


Câu 129. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
C. 12.
D. 27.
A. 18.
B.
2
Câu 130. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

12
6
36
24
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

C

3. A

4.

C

5. A

6.

C

7. A


8.

C

9. A

10.

11. A

12.

1.

13.

B

15. A

16.

17.

D
C
B
D

31.


20.

B

22.

B

26.
28.

B

29.

C
B

33.

D

32.

D

35. A
37.


38.

B

39.

40.

B

41.

C

47.
D

50.

D
C
B
D
B

49. A
51.

C
B


C

53. A

54. A
56.

C

45.

B

48.
52.

43.

C

46.

B
D

B

44.


D

30.

36.

42.

B

24. A

25.
27.

D

18. A

21. A
23.

B

14.

B

19.


D

55.
B

B

57.

C

58.

D

59.

60.

D

61.

B

63.

B

62.


B

64.
66.
68.

D

D

65.

C

D

67.
D

69.
1

C
B


70.

B


71.

C
C

72.

C

73.

74.

C

75. A

76.

C

77.

78. A

79.

80.


83.

C

84. A
C
B

93.

94.

D

95.

97. A

98. A

99. A

100. A

101.

D

103.
B


109. A
C
B

C

106.

D

108.

D

110.

D

112.

D

114. A
C

116.

B


118.

B

119.
121.

B

104. A

105. A

115.

C

102.

C

111.

D

91. A
D

117.


C

89. A

92.

113.

B

87.

D

88.

107.

D

85.

86.
90.

B

81.

D


82.

D

D

D

120. A
122. A

C

123.

D

124. A

125.

D

126.

127. A

128. A


129. A

130. A

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×