Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (651)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.24 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1. Thể tích của khối lập phương có cạnh bằng a 2


A. V = a3 2.
B. 2a3 2.
C. V = 2a3 .


2a3 2
.
D.
3
Câu 2. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).

Câu 3. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới đây?


"
!
5
5
C. [3; 4).
D.
;3 .
A. (1; 2).
B. 2; .
2
2
2

2

sin x
Câu 4. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số
√ f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.

Câu 5. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. D = (0; +∞).


D. D = R \ {1}.

Câu 6. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. .
B. .
C. a.
D.
.
3
2
2
x2
Câu 7. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
e
e
Câu 8. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt

và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2
a 2
a 5
11a
a 7
A.
.
B.
.
C.
.
D.
.
8
4
16
32
x2 − 9
Câu 9. Tính lim
x→3 x − 3
A. −3.

B. +∞.
C. 3.
D. 6.
Câu 10. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (0; 2).

x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 12. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.

vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!

Câu 11. [3] Cho hàm số f (x) = ln 2017 − ln

Trang 1/10 Mã đề 1


!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 13. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
1
Câu 14. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.

D. 0 < m ≤ 1.
1 3
Câu 15. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (−∞; 3).
Câu 16. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Câu 17. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
1
sin n
A. .
B.
.
C. √ .
D.
.
n
n
n
n

log 2x
Câu 18. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
D. y0 = 3
.
.
C. y0 =
3
3
2x ln 10
x
2x ln 10
x ln 10

Câu 19. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 20. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2n + 1
Câu 21. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. 0.
D. .
3
2
2
Câu 22. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 2.
C. 3.
D. +∞.
log7 16
Câu 23. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.

C. 4.
D. −2.
3a
Câu 24. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
x
y
Câu 25. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 18.

C. 12.
D. 27.
2
Câu 26. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D. 1 − sin 2x.
Trang 2/10 Mã đề 1


Câu 27. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e.
e
Câu 28. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 6.

D. 2e + 1.
D. 10.

Câu 29. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.

B. 11 năm.
C. 13 năm.
D. 12 năm.
x−1 y z+1
= =

Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 31. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.

D. 1.

Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9

11
A. .
B. 5.
C. 7.
D.
.
2
2
Câu 33. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
Câu 34. Hàm số y =
A. x = 2.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 3.

D. x = 0.

Câu 35. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.

Câu 36. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .
C. 2.
D. 1.
2
2
Câu 37. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 2
a3 3
A.
.
B.

.
C.
.
D.
.
24
48
16
48
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
4
8

Trang 3/10 Mã đề 1


Câu 40. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 2.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 41. [3-1214d] Cho hàm số y =
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.
Câu 42. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √

.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
cos n + sin n
Câu 43. Tính lim
n2 + 1
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 44. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
.
B.
.
C.
.
D. .
A.
9

9
9
9
Câu 45. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. 2a 2.
A.
D. a 2.
2
4
Câu 46. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
D. y = log √2 x.
C. y = log 41 x.
Câu 47. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
Câu 48. [2] Tổng các nghiệm của phương trình 3
A. 2.

B. 3.

D. {4; 3}.

x2 −4x+5

= 9 là
C. 5.

D. 4.

Câu 49. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (0; 2).
1
Câu 50. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 51. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 52. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.

B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

Câu 53. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
36
18
6
Trang 4/10 Mã đề 1



Câu 54. Giá trị của giới hạn lim
A. −1.

B. 0.

2−n
bằng
n+1

C. 1.

D. 2.

Câu 55. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 7.
D. 3.
Câu 56. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
C.
.
D.

.
A. a .
B.
3
2
6
x+3
Câu 57. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 58. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 59. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.


Câu 60. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+2
c+3

D. Khối tứ diện đều.

D.

3b + 3ac
.
c+1

Câu 61. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.

Câu 62. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. 3.
C. .

D. −3.
A. − .
3
3
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
b a2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 64. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.


C. 12.

D. 20.

Câu 65. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (I) đúng.

Câu 66. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 5/10 Mã đề 1


Câu 67. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.

Câu 68. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1079
1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
x−3
bằng?
Câu 69. [1] Tính lim
x→3 x + 3
A. −∞.
B. +∞.
C. 0.
D. 1.
1

Câu 70. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.

B. D = (−∞; 1).
C. D = R \ {1}.




D. D = (1; +∞).

Câu 71. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
9
3
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 72. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


A. 16.
B. 8 2.
C. 7 3.
D. 8 3.

1−x2

1−x2

Câu 73. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2
Câu 74. Tính lim
A. +∞.

2n − 3
bằng
+ 3n + 1
B. 1.

2n2

Câu 75. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.


!
1
; +∞ .
D.
2

C. −∞.

D. 0.

C. 24.

D. 144.

Câu 76. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 77. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.


D. (0; 2).

Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
.
A. 10a .
B. 40a .
C. 20a .
D.
3

Câu 79. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 64.
D. 63.
Câu 80. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vơ số.
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;

tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 2
a 3
a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Trang 6/10 Mã đề 1


[ = 60◦ , S O
Câu 82. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S


a 57
2a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
Câu 83. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
Câu 84. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = −21.
D. P = 10.
Câu 85. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.

C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
1
Câu 86. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 87. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
!
! đề nào dưới đây đúng?
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
3!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 88. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1

A. k = .
B. k = .
C. k = .
D. k = .
9
15
18
6
Câu 89. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
p
ln x
1
Câu 90. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3

3
9
Câu 91.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z
C.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

( f (x) + g(x))dx =

B.
Z
D.

( f (x) − g(x))dx =

Câu 92. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.

C. 8 mặt.

f (x)dx +

Z

g(x)dx.
Z

f (x)dx −

g(x)dx.

D. 7 mặt.

Câu 93. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C.
.
D. a 6.
2
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.

Trang 7/10 Mã đề 1


B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 95. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
Câu 96. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 6.
D. 9.
2
2
Câu 97. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.
C. 8.
D. 20.
x+1
bằng
Câu 98. Tính lim

x→+∞ 4x + 3
1
1
A. .
B. 1.
C. 3.
D. .
3
4
2
Câu 99. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
2

Câu 100. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
B.
.
C. √ .
A. 3 .
3
e
2e
2 e


D.

1
.
e2

Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
π
Câu 102. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 4.
D. T = 3 3 + 1.
mx − 4
Câu 103. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.
!x
1
Câu 104. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
x
9
Câu 105. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1

A. 1.
B. 2.
C. .
D. −1.
2
Câu 106. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 107. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 1.
D. 0.
x−3 x−2 x−1
x
Câu 108. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
Trang 8/10 Mã đề 1


A. [2; +∞).

B. (2; +∞).


4n2 + 1 − n + 2
Câu 109. Tính lim
bằng
2n − 3
3
B. 2.
A. .
2
Câu 110. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. (−∞; 2].

D. (−∞; 2).

C. +∞.

D. 1.


C. 5.

D. 4.

Câu 111. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.

D. x = −8.

Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.

D. Hai cạnh.

Câu 113.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 114. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =

.
C. log2 a =
.
D. log2 a = loga 2.
loga 2
log2 a
Câu 115. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Câu 116. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Câu 117. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 118. [3-12217d] Cho hàm số y = ln
x+1
0
y
0

y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 119. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 120. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f 0 (x)dx =

A. Nếu
Z
B. Nếu
Z
C. Nếu

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

f (x)dx =

Z


g(x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 121. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
!
1
1
1
Câu 122. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 1.
C. 0.
D. 2.
2
Trang 9/10 Mã đề 1



log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.

Câu 123. [1-c] Giá trị biểu thức
A. 4.

D. −8.

Câu 124. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
A. T = e + .
e
e
Câu 125. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 126. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 127. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 128. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
3
1
A. .
B. .
C. 1.
D.
2
2
x2 − 12x + 35
Câu 129. Tính lim
x→5
25 − 5x
2
D.

A. −∞.
B. +∞.
C. − .
5
Câu 130. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D.


3
.
2

2
.
5
(4; +∞).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


B

2. A

3.

D

4.

C
C

5.

B

6.

7.

B

8. A

9.

D

10.


11.

D

12. A

14.

C

16. A
18.

D

20.

15.

B

17.

B

19. A
21. A

C


22.

B

23. A

24.

B

25.

26.

B

27. A

28.

B

29.

30.

B

31.


32. A
34.

C

B
D
B

33. A
B

36.

35.
C
D

38.
40.

37.

D

39.

D


41. A

C

42. A

43.

44. A

45. A

46.

D

47.

48.

D

49. A

50.

D

51.


52. A

53.

54. A

55. A

56.

C

D
C
B
C

57.

C

D

58.

B

59.

B


60.

B

61.

B

62.

C

63. A

64.

C

65. A

66.

C

67.

C

68.


C

69.

C

1


70.

71.

D

72. A

73.
D

74.
76.

B

D

77.


D

C

79.

80.

C

81.

82.

B
C

83.

D

84.

C

75.

78.

86.


D

D

85. A

C
B

87.

89. A

B

90. A
C

91.

92.
D

93.
95.

B

94. A

96. A

C

97. A

98.

D

99. A

100.

D

C

101.
103. A

104. A

105. A

106. A

107.

B


108. A

109.

D

110.

111.

D

112. A

113.

C

115.

114.
D

C

C

B
D


B

122.

B

124.

B

126.

127. A

128.
D

130.

2

D

120.

125. A
129.

B


118.

119.
123.

D

116.

117. A
121.

C

102.

D
C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×