Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (655)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.88 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.

D. 6 mặt.

Câu 2. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P = √
z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 3. Dãy số nào có giới hạn bằng 0?!
n


6
2
A. un = n − 4n.
B. un =
.
5

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

Câu 4. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4

4
Câu 5. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 2.
C. 3.
D. 1.
3
Câu 6. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
Câu 7. Tính lim

x→+∞

A. 2.


B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (III).

B. −3.

C. 1.

2
D. − .
3

x−2
x+3

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C.
.
D.

.


a + b2
2 a2 + b2
a2 + b2
a2 + b2
1
Câu 9. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y
0
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 10. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 18.
D. 27.
2
Trang 1/10 Mã đề 1



Câu 11. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 12. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 13. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:

A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 14. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 15. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 16. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối lập phương.

Câu 17. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 1.

x2 + 3x + 5

Câu 18. Tính giới hạn lim
x→−∞
4x − 1
A. 0.
B. 1.

C. 4.

D. Khối 12 mặt đều.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

1
C. − .
D.
4
Câu 19. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 14.
D.
2x + 1
Câu 20. Tính giới hạn lim
x→+∞ x + 1
A. 1.
B. −1.

C. 2.
D.
Câu 21. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.

1
.
4
ln 12.

1
.
2

D. Vô nghiệm.

Câu 22. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 23. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.

Trang 2/10 Mã đề 1


 π π
Câu 24. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
Câu 25. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 26. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
.
B.
.

C.
.
D.
.
A.
12
4
6
12
Câu 28. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
x
9
Câu 29. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 30. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.


Câu 31. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 32.

D. S = 135.

C. 6.

D. 36.

Câu 32. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).

D. (2; 2).

Câu 33. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.

Câu 34. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Câu 35. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.

B. 81.

C. 82.

2
Câu 36. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.

D. 64.

8
x


D. |z| = 2 5.

d = 60◦ . Đường chéo

Câu 37. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 38. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.


D. Khối 20 mặt đều.
Trang 3/10 Mã đề 1






Câu 39. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. m ≥ 0.
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 40. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
2

2


Câu 41. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C. a.
D.
.
A. .
2
3
2
Câu 42. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 2e + 1.
e

D. 3.

Câu 43. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].

D. D = R.


Câu 44. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.

D. 10 cạnh.

2

C. 9 cạnh.
2

Câu 45. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
C. 2 .
A. 3 .
B. √ .
2e
e
2 e
Câu 46. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D.

2

.
e3

D. Khối bát diện đều.

Câu 47. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
x3 − 1
Câu 48. Tính lim
x→1 x − 1
A. +∞.
B. 3.
C. −∞.
D. 0.
Câu 49. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
abc b2 + c2
a b2 + c2
b a2 + c2
A. √
.

B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 50. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 51. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.

C. D = R \ {0}.

D. D = R.

Câu 52. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Trang 4/10 Mã đề 1


Câu 53. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. −1.

C. 4.

3

Z

6
3x + 1

. Tính

1


f (x)dx.
0

D. 2.

Câu 54. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1079
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 55. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
D. {3; 3}.
Câu 56. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.

B. 1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 1 − sin 2x.

5
Câu 57. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

A. 5.
B. 25.
C. 5.

D.

log √a

1
.
5

Câu 58. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 59. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.


C. 10.

D. 8.

Câu 60. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 61. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. − < m < 0.
A. m > − .
4
4
Câu 62. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 2

a 5
11a
a2 7
A.
.
B.
.
C.
.
D.
.
4
16
32
8
!
1
1
1
Câu 63. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. +∞.
D. 2.
2

2
2n + 1
Câu 64. Tính giới hạn lim
3n + 2
1
3
2
A. .
B. .
C. .
D. 0.
2
2
3
Câu 65.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
Câu 66. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.
Trang 5/10 Mã đề 1



Câu 67. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 68. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
!4x
!2−x
3
2


Câu 69. Tập các số x thỏa mãn
3 # 2
#
"
!
"
!
2

2
2
2
A. −∞; .
B. −∞; .
C.
; +∞ .
D. − ; +∞ .
3
5
5
3
Câu 70. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 71. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3

−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3
4

Câu 72. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 9 mặt.
D. 7 mặt.
4x + 1
bằng?
Câu 73. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
Câu 74. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).



x = 1 + 3t




Câu 75. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương

 trình là










x = 1 + 7t
x = 1 + 3t
x = −1 + 2t
x = −1 + 2t

















A. 
.
B. 
C. 
y = −10 + 11t . D. 
y = −10 + 11t .
y=1+t
y = 1 + 4t .

















z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
z = 1 − 5t
Trang 6/10 Mã đề 1


Câu 76. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. −e2 .
D. 2e2 .
Câu 77. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
0

0

C. 6.

D. 8.

0

Câu 78. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
B. 8 3.
C.
.
D.
.
A. 6 3.
3
3
x−3
Câu 79. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 1.
C. 0.
D. +∞.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 80. [4-1212d] Cho hai hàm số y =
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
Câu 81. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 4 mặt.

D. 6 mặt.
[ = 60◦ , S A ⊥ (ABCD).
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối

3
3
3

a
a
a
2
2
3

A. a3 3.
.
C.
.
D.
.
B.
4
12
6
Câu 83. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 − ln x.
D. y0 = 1 + ln x.
Câu 84. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (0; 2).

Câu 85. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.

C. 8.

Câu 86. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.


B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

D. 10.

Câu 87. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

!
1
D.
; +∞ .
2

Câu 88. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 4.


D. 2.

Câu 89. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
1 − 2n
Câu 90. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 91. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.
Trang 7/10 Mã đề 1



Câu 92. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B. a .
C.
.
D.
.
A.
3
6
2
2

Câu 93. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 6.

D. 7.

d = 120◦ .
Câu 94. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 4a.
C. 2a.
D. 3a.
2
un
Câu 95. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 96. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 97. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. .
B. 1.
C.

.
D. 2.
2
2
Câu 98. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 99. [2] Tổng các nghiệm của phương trình 9 − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 3.
x

D. 10.

Câu 100. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
2a
a
5a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 101. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.
D. 1.
a
1
Câu 102. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.




x=t




Câu 103. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2

2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Trang 8/10 Mã đề 1


Câu 104. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 105. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3

6
3
Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x+1
Câu 107. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. 3.
C. .
D. .
3
4
Z 2
ln(x + 1)
Câu 108. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 0.
D. 3.
Câu 109. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.

Tính f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 110. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 5
a 6
a3 15
3
A.
.
B.
.
C. a 6.
.
D.
3
3
3
!
x+1
Câu 111. [3] Cho hàm số f (x) = ln 2017 − ln

. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
.
B.
.
C.
.
D. 2017.
A.
2017
2018
2018
Câu 112. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
12
12
6
4
Câu 113. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
x+1
Câu 114. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
6
3
4
2

Câu 115. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 1.
D. m > 0.
Câu 116. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log π4 x.
Câu 117. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
Trang 9/10 Mã đề 1


Câu 118. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
.
B.
u
=
.
A. un =
n

5n + n2
n2

C. un =

n2 + n + 1
.
(n + 1)2

D. un =

n2 − 2
.
5n − 3n2

Câu 119. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 120. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = −8.
D. x = 0.
2mx + 1
1
Câu 121. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x

3
A. −2.
B. 0.
C. 1.
D. −5.
Câu 122. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 123. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1
Câu 124. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. −3.
C. − .
D. .
3
3
Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban

đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 126. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
2
x − 3x + 3
đạt cực đại tại
Câu 127. Hàm số y =
x−2
A. x = 3.
B. x = 2.

C. 30.

D. 8.

C. x = 1.

D. x = 0.

Câu 128. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−3; 1].
D. [−1; 3].

Câu 129. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
1
Câu 130. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.

C. 2.

D. 24.

C. 1.

D. −1.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.


B

3.

D

4.

B

5.

B

6. A
8.

C

7.
9.

D

14. A

15.
B


C
B
D
D

35.

C
D

28. A

C

30.

B

33.

20.

26. A

27.
31.

C

24.


B

29.

18.
22. A

23.
25.

16. A

C

19.
21.

D

12.

13. A
17.

C

10.

C


11.

D

32.

C
B

34. A

C
B

36. A

37.

C

38.

39.

C

40. A

41.


C

42.

D

44.

D

D

43.
45.

C

47.

46. A
D

49.

48.

D

53.


52.

D
B

58.

59.

B

60. A

D
C

62.

61. A
63.
67.

C

56. A

57.

65.


D

54.

C

55.

B

50.

C

51.

D

D
B

64.

C

66.

C


68. A

C
1

D


69.

70.

D

71. A
73.

B

75.

C

77.

D

79.
82.


72.

C

74.

C

76.

C

78. A

C
B

80.

D

83.

D

84.

C

85.


86.

C

87. A

88.

B

89. A

90.

B

91.
D

92.

C

C
D

93.

94. A


95.

96.

B

97.

98.

B

99.
D

100.
102.

D

101.

B

C
D
C
B


103.

104.

D

105. A

106.

D

107.

C
D

108.

B

109.

B

110.

B

111.


B

112. A

113. A

114.

115.

C

116. A

117. A

118. A

119. A

120.

C

122.

D

124.

126.

B

123. A

C

125.

B

128.
130.

121.

B

127.
129. A

C
B

2

B
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×