TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x+1
bằng
x→−∞ 6x − 2
1
B. .
2
Câu 1. Tính lim
1
1
.
D. .
6
3
√
√
Câu 2. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
A. 1.
C.
Câu 3. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
D. 30.
Câu 4. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. −2.
C. 2.
D. − .
A. .
2
2
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
√
Câu 6. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 7. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng −∞; .
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
√
x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. − .
D. 0.
4
4
Câu 9. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
3
Câu 10. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .
D. e.
√
Câu 11. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
36
18
Câu 12. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4
a
1
Câu 13. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
Trang 1/10 Mã đề 1
Câu 14. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 7.
C. 9.
D. 5.
Câu 15. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
Câu 16. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 17. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 18. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 19. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
D. |z| = 10.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
2n + 1
Câu 21. Tính giới hạn lim
3n + 2
1
2
3
B. .
C. .
D. 0.
A. .
2
2
3
Câu 22. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 23. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Câu 24. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 25. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.
C. D = (0; +∞).
D. D = R.
Câu 26. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.
C. .
e
D. 2e + 1.
Câu 27. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 1.
√
C. 4.
√
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 28. [12215d] Tìm m để phương trình 4 x+
− 4.2 x+
− 3m + 4 = 0 có nghiệm
9
3
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
3
2
Câu 29. Giá
√
√
√ trị cực đại của hàm số y√= x − 3x − 3x + 2
A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
D. −3 − 4 2.
1−x2
1−x2
Trang 2/10 Mã đề 1
Câu 30. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 31. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
3
x −1
Câu 32. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. 12.
D. 8.
C. +∞.
D. 0.
Câu 33. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 6.
D. 8.
1
Câu 34. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
√
Câu 35. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
B.
.
C.
.
D.
.
A. a 3.
3
12
4
q
2
Câu 36. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Câu 37.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
2
√
a3 2
C.
.
6
π
Câu 38. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A. e .
B.
e .
C.
e .
2
2
2
Câu 39. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.
√
a3 2
D.
.
4
x
D. 1.
D. Thập nhị diện đều.
Câu 40. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; 8).
C. A(−4; 8).
D. A(4; −8).
Câu 41. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − .
A. − 2 .
D.
e
2e
2n2 − 1
Câu 42. Tính lim 6
3n + n4
A. 1.
B. 2.
C. 0.
D.
!
1
1
1
Câu 43. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D.
2
2
un
Câu 44. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D.
1
− .
e
2
.
3
2.
−∞.
Trang 3/10 Mã đề 1
Câu 45. Tính lim
A. 0.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3
C. 1.
Câu 46. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
D.
7
.
3
D. Năm mặt.
Câu 47. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 48. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 1.
A. 2.
B. 2.
x+2
Câu 49. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
3a
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
4
3
2
Câu 51. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 3 − log2 3.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
√
2
Câu 53. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
C. 7.
A. −7.
B. 6 2.
D. 1 − log2 3.
Câu 52. [1-c] Giá trị biểu thức
Câu 54. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
!2x−1
!2−x
3
3
Câu 55. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).
D. 1.
√
D. −6 2.
D. e.
D. (+∞; −∞).
Câu 56. Giá trị của lim (3x2 − 2x + 1)
x→1
B. +∞.
2−n
Câu 57. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
A. 2.
C. 1.
D. 3.
C. 2.
D. 1.
Câu 58. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = 1 − ln x.
Câu 59.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
A.
.
B.
.
3
3
!n
4
C.
.
e
!n
5
D. − .
3
Trang 4/10 Mã đề 1
Câu 60. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 61. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
D. (0; 2).
C. (−∞; 2).
Câu 62. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 63. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
.
C.
.
D. 6 3.
B.
3
3
2n + 1
Câu 64. Tìm giới hạn lim
n+1
A. 1.
B. 3.
C. 2.
D. 0.
Câu 65. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 66. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
Câu 67. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
x+3
Câu 68. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
x−3
Câu 69. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 70. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 71. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 72. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B. .
C.
.
D. .
3
2
2
2
2
0
Câu 73. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. −1 + 2 sin 2x.
Câu 74. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
D. 8 mặt.
Trang 5/10 Mã đề 1
Câu 75. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 76. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
Câu 77. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 6.
D. 12.
Câu 78. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 79. Dãy số
!n nào có giới hạn bằng3 0?
n − 3n
−2
.
.
B. un =
A. un =
3
n+1
C. un = n − 4n.
2
!n
6
D. un =
.
5
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Câu 81. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
6
9
Câu 82. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.
D. 10 năm.
Câu 83. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2
2
Câu 84. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 12.
D. 8.
Câu 85. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 5.
2
D. 6.
Câu 86. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
8
Câu 87. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 88. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
Trang 6/10 Mã đề 1
Câu 89. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 6.
D. 3.
Câu 90. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n lần.
D. n3 lần.
Câu 91.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
B.
Z
f (x)dx −
Z
g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
mx − 4
Câu 92. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Câu 93. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 94. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
Câu 95. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
cos n + sin n
Câu 96. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 97. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 16π.
D. 32π.
Câu 98. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 1587 m.
D. 387 m.
Câu 99. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
5a3 3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 100. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Trang 7/10 Mã đề 1
2
Z
Câu 102. Cho
A. 1.
1
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. −3.
C. 3.
D. 0.
Câu 103. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là
√
3
3
3
a 3
a
a
A.
.
B. a3 .
C.
.
D.
.
3
3
9
Câu 104. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 105.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.
A.
Z
C.
0dx = C, C là hằng số.
B.
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
Câu 106. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
Câu 107. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3 3
a3
a 3
.
B.
.
C.
.
D. a3 .
A.
6
2
3
Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 109. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 110. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
√
Câu 111. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 112. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 113. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
x−2
Câu 114. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
D. 1.
3
Câu 115. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.
D. m , 0.
Trang 8/10 Mã đề 1
Câu 116. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
12 + 22 + · · · + n2
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 118. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −7.
A. −4.
B. −2.
C.
27
Câu 119. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
Câu 117. [3-1133d] Tính lim
Câu 120. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 121. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
.
B. 2.
A.
C. 2 13.
D. 26.
13
q
2
Câu 122. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 123. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Năm cạnh.
Câu 124. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 13 năm.
D. 11 năm.
Câu 126. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
A. .
B.
.
C.
.
D.
.
9
9
9
9
!
!
!
4x
1
2
2016
Câu 127. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 2016.
D. T = 1008.
2017
Câu 128. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
Trang 9/10 Mã đề 1
100.(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Z 1
Câu 129. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
A. m =
0
1
1
B. 0.
C. 1.
D. .
A. .
2
4
2
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 12.
D. ln 14.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2. A
3.
B
4.
5.
B
6.
C
7.
C
C
D
10.
11.
D
12. A
C
16. A
C
17.
D
19.
22. A
18.
C
21.
C
23. A
24.
B
25.
26.
B
27.
28.
D
31.
B
34.
B
C
B
33.
C
35.
36. A
C
B
37. A
38.
39.
C
B
42.
44.
D
29.
30. A
40.
C
14.
15. A
32.
D
8.
9.
13.
B
D
41.
C
43.
C
B
45.
46. A
D
B
47.
48.
D
C
49.
D
50.
B
51.
B
52.
B
53.
B
54.
D
55. A
56. A
58.
C
57.
B
59.
B
60.
D
61. A
62.
D
63.
64.
C
66.
68.
D
C
1
D
65.
B
67.
B
69.
B
70. A
71.
D
72. A
73.
D
74.
C
75. A
76.
C
77. A
78.
79. A
B
80. A
82. A
83.
85.
D
B
C
87.
D
89.
91.
84.
B
C
88.
C
D
C
92.
94.
D
95.
B
D
96.
B
99. A
100. A
102.
86.
90.
93. A
98.
B
101. A
B
103.
104.
D
106. A
108.
D
C
105.
B
107.
B
109. A
110.
B
111.
D
112.
B
113.
D
D
114.
D
115.
116.
D
117.
118.
119.
B
120. A
D
121. A
122.
D
124.
126.
C
123.
C
125. A
C
127.
B
128.
D
130.
D
129. A
2
D