Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (847)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.38 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
mx − 4
Câu 2. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 26.
x2 −3x+8

D. {4; 3}.

D. 45.

Câu 3. [2] Tổng các nghiệm của phương trình 3
=9

A. 7.
B. 6.


C. 8.
D. 5.
t
9
Câu 4. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vơ số.
D. 0.
2x−1

Câu 5. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 6. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
B. 50 50 .
C. 50 50 .

D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
Câu 8. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
Câu 9. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
1
Câu 10. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.

C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 11. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
Câu 12. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
Câu 13. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 14. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 15. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 4.
C. 11.
D. 10.
Trang 1/10 Mã đề 1



Câu 16. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
Câu 17. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

2

Câu 18. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 3 .
2e
e
2 e


D.

1
.
e2

x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 19. [4-1213d] Cho hai hàm số y =

Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng

abc b2 + c2
c a2 + b2
a b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
d = 120◦ .
Câu 21. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2
Câu 22. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 6.
.
D. a 3.
B. 2a 6.
C.
2
Câu 23. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
1

Câu 24. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.

D. D = (1; +∞).

Câu 25. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 26. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).

C. (1; +∞).

D. (−∞; −1).

Câu 27. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 28. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.

D. 10 mặt.
Trang 2/10 Mã đề 1


Câu 29. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 12.
Câu 30. Tính lim
x→1

A. 3.

x3 − 1
x−1


B. 0.

C. 10.

D. 8.

D. +∞.

C. −∞.
2

x
Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
Câu 32. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 33. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là




2a3 3
5a3 3
4a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Z 3
x
a
a
Câu 34. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?

A. P = 28.
B. P = 16.
C. P = 4.
D. P = −2.
Câu 35. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.

D. 1.

Câu 36. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m ≥ 3.
D. m > 3.
Câu 37. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

Câu 38. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. x = 3.


D. x = 0.

C. 20.

D. 8.

Câu 39. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+1
c+2
c+2
Câu 40. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. 2.
C. .
2
2

D.


3b + 2ac
.
c+3

D. −2.

Câu 41. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 42. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
Trang 3/10 Mã đề 1


Câu 43. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −15.
D. −12.
Câu 44. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a3 5
6
a
15
a
A.
.
B. a3 6.
.
D.
.
C.
3
3
3
Câu 45. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
x−3
Câu 46. [1] Tính lim
bằng?

x→3 x + 3
A. −∞.
B. +∞.
C. 0.
D. 1.


4n2 + 1 − n + 2
Câu 47. Tính lim
bằng
2n − 3
3
C. 2.
D. +∞.
A. 1.
B. .
2
Câu 48. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = R.
2

D. D = (−2; 1).
x−1 y z+1
Câu 49. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x − y + 2z − 1 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 50. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.

.
48
16
48
24
Câu 52. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
2
2
3
0 0 0 0
0
Câu 53.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.

B.
.
C.
.
D.
.
2
2
3
7
x2 − 5x + 6
Câu 54. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
C. −1.
D. 0.

Câu 55. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
1
A. − .
B.
.
3
3


!n
4
C.
.
e

Câu 56. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).

!n
5
D.
.
3
D. (0; −2).
Trang 4/10 Mã đề 1


Câu 57. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.

C. .
D.
.
A.
9
9
9
9
log 2x
Câu 58. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 59. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 70, 128 triệu đồng.
Câu 60. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 61. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
x+2
bằng?
Câu 62. Tính lim
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5

a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
2mx + 1
1
Câu 64. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
Câu 65. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.

D. −1 + 2 sin 2x.


Câu 66. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Năm cạnh.
C. Ba cạnh.

D. Hai cạnh.

Câu 67. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 68. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
Câu 69. [2] Tổng các nghiệm của phương trình 2
A. −6.
B. −5.
Câu 70. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối bát diện đều.
x2 +2x

=8
C. 6.


2−x

D. Khối tứ diện đều.


D. 5.

C. Khối tứ diện đều.

D. Khối lập phương.
[ = 60◦ , S O
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
17
19

19
Trang 5/10 Mã đề 1


Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
a3
2a3 3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 73. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 75. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 76. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
5
8

7
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 77. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Câu 78. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
!4x
!2−x
3
2


Câu 79. Tập các số x thỏa mãn
3
2
"
!
"
!
#
2
2
2
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
5
3
5


D. Một mặt.

#
2
D. −∞; .
3
π
Câu 80. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 2.
Câu 81. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
Câu 82. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .

D. 9.
2
2
Câu 83. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
4a 3
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 6/10 Mã đề 1


Câu 84. [3-1132d] Cho dãy số (un ) với un =

1
A. lim un = .
2
C. lim un = 1.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.

Câu 85. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 86. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 87. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 88. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc

với (S BC).
√ là


√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
6
12
4
12
Câu 89. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
4x + 1
bằng?
Câu 90. [1] Tính lim

x→−∞ x + 1
A. 4.
B. −1.
C. −4.
D. 2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 91. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 3
a3 2
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
24
24
12
Câu 92. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1

1
B. −e.
C. − .
D. − .
A. − 2 .
e
2e
e
Câu 93. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
Câu 94. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (I) đúng.
Trang 7/10 Mã đề 1



Câu 95. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 1.
C. .
D. 3.
2
2
Câu 96. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.
D. 0.
Câu 97. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
0 0 0 0
Câu 98. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
9
18
6
x
x
Câu 99. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 100. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

C. 3.

D. 4.


Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
2x + 1
Câu 102. Tính giới hạn lim
x→+∞ x + 1
1
A. −1.
B. .
C. 1.
D. 2.
2
d = 30◦ , biết S BC là tam giác đều
Câu 103. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.

D.
.
13
26
9
16
1
Câu 104. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 3.
D. 2.
Câu 105. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

C. 10.

D. 12.

Câu 106. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {0}.
C. D = R.
D. D = R \ {1}.
!
1
1

1
+
+ ··· +
Câu 107. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 0.
D. 1.
2
Câu 108. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
2
4
8
log3 12
Câu 109. [1] Giá trị của biểu thức 9
bằng
A. 24.
B. 4.
C. 144.
D. 2.

Trang 8/10 Mã đề 1


Câu 110. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. (II) và (III).

D. Cả ba mệnh đề.
2

Câu 111. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
1 − n2
bằng?
Câu 112. [1] Tính lim 2
2n + 1
1
1

1
A. .
B. 0.
C. .
D. − .
2
3
2
3
Câu 113. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 114. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = e + 1.
D. T = 4 + .
A. T = e + .
e
e
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 116. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) liên tục trên K.
C. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng



a 2
a 2
A.

.
B. a 3.
C. a 2.
D.
.
2
3
log(mx)
Câu 118. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 119. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.

Câu 120. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3 3
a3 3

a3
3
A.
.
B. a 3.
C.
.
D.
.
3
12
4
Câu 121. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P = 2i.
D. P =
.
2
2
Trang 9/10 Mã đề 1


Câu 122. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2

A. 2e.
B. .
C. 3.
e
Câu 123. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.

D. 2e + 1.
D. −5.
π



Câu 124. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2

1 π3
3 π6
C.
A. 1.
B. e .
e .
2
2
√3
4
Câu 125. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7

2
5
A. a 3 .
B. a 3 .
C. a 3 .


2 π4
D.
e .
2
5

D. a 8 .

Câu 126. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. (1; 2).
C. [3; 4).
D. 2; .
2
2
Câu 127.

Các khẳngZđịnh nào sau đây là sai?
Z
k f (x)dx = k

A.
Z
C.

Z


ab.

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 128. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.


D. Hình chóp.

Câu 129. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = x
.
D. y0 = 2 x . ln x.
A. y0 =
ln 2
2 . ln x
Câu 130. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
2

6
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3. A

4. A

5.

C

6.

7.

C


8.

9.

C

10.

11. A

12.
D

13.
C

17.
B

21.
23.

B
D
B

16.

D


18.

D

20.

D

22. A

C

D

24.

B

25. A
27.

D

14. A

15. A
19.

B


26. A
B

28. A

29. A

30. A

31.

C

32. A

33. A
35.

C

37. A

34.

C

36.

C


38. A

39.

C

40.

D
D

41.

D

42.

43.

D

44.

46.

C

47. A

48.


C

49. A

C

50. A

51.

C

52. A

53.

C

54.

C

56.

D

58.

C


60.
62.

D

B

57.

B

59.

B

61.

B

63.

B

C

65.

64. A
66.


55.

D

67. A

C

68. A

69.
1

B


70.

71.

C

72. A

C

73.

B


75.

B

77.

B

78. A

79.

B

80. A

81.

D

83.

D

74.

B

76.


C

82.

C

84. A

85. A

86.

D

87.

88.

D

89.

C

91.

C

93.


C

90. A
C

92.
94. A

B

95. A

96.

D

97.

99. A
C

101.
103. A

C

100.

D


102.

D

104.

B

105.

D

106.

C

107.

D

108.

C

C

109.

110.


B

111. A

112.

113. A

114.

B

116.

B

115.

D

117. A

118. A

119.

B

120. A


121.

B

122.

B

127.
129.

C

124.

123. A
125.

D

D

126. A
D

128. A

B


130.

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×