Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (697)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (146.53 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính thể tích khối lập phương biết tổng diện tích tất
√ cả các mặt bằng 18.
A. 9.
B. 27.
C. 3 3.
D. 8.
Câu 2. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 3. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 4. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. .


C. 2.
D. 1.
A.
2
2
Câu 5. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 6. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 7
a 5
.
B.
.
C.
.
D.

.
A.
16
4
32
8
Câu 7. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
Câu 8. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là 4.
Câu 9. !Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3

!n
5

C. − .
3

!n
4
D.
.
e

Câu 10.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 11. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Câu 12. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = 10.
B. P = −21.
C. P = −10.
D. P = 21.
2

Câu 13. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 14. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. .
C.
.
D. a.
2
3
2
Trang 1/11 Mã đề 1



Câu 15. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.
D. 27.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 16. [2-c] Cho hàm số f (x) = x
9 +3
1
A. .
B. 2.
C. 1.
D. −1.
2
Câu 17. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.
C. 4.
D. 5.
Câu 18.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.

B.
.
C. .
D.
.
12
2
4
4
d = 30◦ , biết S BC là tam giác đều
Câu 19. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
13
9

26
Câu 20. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
−2x2

Câu 21. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
B. 3 .
A. √ .
e
2 e

C. Cả hai đều đúng.

D. Cả hai đều sai.

trên đoạn [1; 2] là
1
C. 3 .
2e

D.

Câu 22. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.


B. 1.

C. 0.

Câu 23. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

1
.
e2

un
bằng
vn
D. −∞.
D. Năm mặt.

Câu 24. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.

Câu 25. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. Vô nghiệm.
cos n + sin n
Câu 26. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
0 0 0
d = 300 .
Câu 27. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3
3

3a
3
a
3
A. V = 6a3 .
B. V =
.
C. V = 3a3 3.
D. V =
.
2
2
Câu 28. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên n lần.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
!4x
!2−x
2
3
Câu 29. Tập các số x thỏa mãn


3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
3
5
5

Trang 2/11 Mã đề 1


Câu 30. [1-c] Giá trị của biểu thức
A. −4.

log7 16
log7 15 − log7

B. 2.

15
30

Câu 31. Dãy! số nào có giới hạn bằng 0?
n
6
n3 − 3n
A. un =
.
B. un =
.
5
n+1

bằng
C. −2.

D. 4.


!n
−2
C. un =
.
3

D. un = n2 − 4n.

Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 33. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. 1.
C. .
D.
.
2
2
2
x+2
Câu 34. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 2.

D. 1.

Câu 35. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Câu 36. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 37. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
C. 3.
A. 2e.
B. .
e

D. 2e + 1.

2

Câu 38. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 2.

D. 3.

Câu 39. Cho hàm số y = x − 2x + x + 1. Mệnh đề nào dưới đây đúng?
3

2

A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 40. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.


!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

C. 12.

D. 20.

Câu 41.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.

x2 + 3x + 5
Câu 42. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.

D. 1.
4
4
log 2x
Câu 43. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
2n2 − 1
Câu 44. Tính lim 6
3n + n4
2
A. 1.

B. 0.
C. .
D. 2.
3
Trang 3/11 Mã đề 1


Câu 45.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.


Câu 46. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
8
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
x+1
bằng
Câu 47. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
3

2
6
2
−1
Câu 48. [2-c] Giá trị nhỏ nhất của hàm số y = x ln x trên đoạn [e ; e] là
1
1
1
A. −e.
B. − 2 .
D. − .
C. − .
e
e
2e
Câu 49. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B. 2 13.
C.
.
D. 2.
13
2


2

sin x
Câu 50. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 51. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4
4
Câu 52. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
D. 8.

Câu 53. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

!
1
D. − ; +∞ .
2

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
ln x p 2
1
Câu 55. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8

8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
3a
Câu 56. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
A. .
B.
.
C.
.
D. .
4
3

3
3
2
Câu 57. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.
D. 6510 m.
Trang 4/11 Mã đề 1


Câu 58. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log √2 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
2mx + 1
1
Câu 59. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
Câu 60. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.

B. 2.
C. 3.
D. 1.
Z 1
Câu 61. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. .
D. 0.
4
2
Câu 62. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
!
3n + 2
2
Câu 63. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.

D. 5.



x=t




Câu 64. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2

2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
2
x
Câu 65. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
[ = 60◦ , S O
Câu 66. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.

.
C.
.
D. a 57.
19
17
19
Câu 67. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 12.
D. 8.
Z 3
x
a
a
Câu 68. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.
A. 1.

B.


Câu 69. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −2.

D. x = −5.

Câu 70. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.

D. 2.
Trang 5/11 Mã đề 1


Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 72. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.


Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 74. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 75. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.


C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 76. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {4; 3}.

D. {3; 3}.

Câu 77. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 78. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e2 .
C. −e2 .
D. 2e4 .
Câu 79. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B. 5.
C.
.

D. .
2
2
d = 120◦ .
Câu 80. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 3a.
D. 2a.
A. 4a.
B.
2
Câu 81. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = 1 − ln x.
D. y0 = x + ln x.
Câu 82. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
A. −
.
B.
.
C. − .
D.

.
100
25
16
100
Câu 83. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = 4 + .
A. T = e + 3.
B. T = e + .
e
e
Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Câu 85. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

C. Khối 12 mặt đều.

Câu 86. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .

B. 2.
C. − .
2
2

D. Khối tứ diện đều.

D. −2.
Trang 6/11 Mã đề 1


Câu 87. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 88. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 6 mặt.


D. 7 mặt.

Câu 89. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 90. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 34.
C. 5.
D. 68.
A.
17
2n − 3
Câu 91. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 92. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm

S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 93.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.


k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Câu 94. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
3

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z


f (u)dx = F(u) +C.

1
C. − .
2

Câu 95. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.

D.

1
.
2

D. 1.

Câu 96. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4

4
4
Câu 97. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 2.
D. 0, 4.
Câu 98. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Năm tứ diện đều.
Trang 7/11 Mã đề 1


Câu 99. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B.
D. a 6.
A. a 3.
.
C. 2a 6.
2

3
Câu 100. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).
D. (−1; 1).
Câu 101. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
A. 1.
B. .
C. 0.
D.
3
Câu 103. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
C. log2 a =
.
D.
A. log2 a = − loga 2.
B. log2 a =
loga 2
log2 a


Câu 102. Tính lim

Câu 104. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Khơng tồn tại.
C. 0.
x−3
Câu 105. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
C. 1.
Câu 106. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

2
- .
3
log2 a = loga 2.

D. 9.
D. +∞.
D. {4; 3}.



Câu 107. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √

3
3
3

3
a
a
3
a
.
C.
.
D.
.
A. a3 3.
B.
3
4
12
Câu 108. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
x−2
Câu 109. Tính lim
x→+∞ x + 3

2
A. 2.
B. −3.
C. 1.
D. − .
3
Câu 110. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. [6, 5; +∞).
D. (4; 6, 5].
Câu 111. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 112. Cho hình chóp S .ABC có BAC
(ABC). Thể

√ tích khối chóp S .ABC là

3
3
3

a 3

a
a
3
2
A.
.
B. 2a2 2.
C.
.
D.
.
12
24
24
Câu 113. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
B. a 2.
C.
.
D.
.
2

4
Trang 8/11 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0.
log 2x
Câu 115. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10

2x ln 10
x3

Câu 114. [3-1226d] Tìm tham số thực m để phương trình

2

Câu 116. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 5.

D. 6.

Câu 117. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
2

6
3
1
Câu 118. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 119. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vô số.
Câu 120. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 1.

D. 6.

Câu 121. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 9.
D. 6.
A. .

2
2
Câu 122. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).
D. [1; 2].
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vuông góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 3
a 2
A.
.
B. a3 3.
C.
.
D.
.
2
4
2
2n + 1

Câu 124. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 2.
D. 3.
Câu 125. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+3
c+2
c+1

D.

3b + 3ac
.
c+2

! x3 −3mx2 +m
1
Câu 126. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên

π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
a
1
Câu 127. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 1.
D. 4.
Câu 128. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Trang 9/11 Mã đề 1


Câu 129. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m , 0.
2
x − 3x + 3
Câu 130. Hàm số y =

đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 3.

D. m < 0.
D. x = 1.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.

C

4.

D

C

5.

D

6.

D

7.

D

8.

D

9.

10. A

B
D

11.

12.

13.


C

14.

15.

C

16.

17.

C

18.

19.

B

20.

21.

D

B
D
C

D
B

22.

C

23. A

24.

C

25. A

26. A

27.

28.

B

29. A

30. A
32.

C


31.
33.

B

34.

35.

B

36.

37.

C

39.

38.
D

41.

44.

45.

D


46.

47.

D

48.

C

B
C

53.

D

54.

D

C
D
B

52.

B

B


B

D

D

56.

B

58.

B

59.

C

60.

61.

C

62.

63.

D


50.

51.

57.

C

42. A

C

49.

D

40.

43. A

55.

B

D
C

64.


B

65. A

66. A

67. A

68.
1

D
B


69.

70.

B
D

71.

72.

C

73.


74.

75.

D

76.

77.

D

78.

79.

D

80.

81.

B

84.
D

88.

D


B
D
B
D
C
D

96.
98.

B

99.

D

B

100.

D
D

101.

B

102.


103.

B

104.

C

106. A

105. A
B

108. A
C

109.
111. A

C

113.

110.

D

112.

D


114. A

115.

B

116.

117.

B

118. A

119.

B

120.

121. A

122.

123. A

124.

125.


D

B
D
B
C

126. A

127. A
129.

B

94.

95. A

107.

C

92.

C

93.
97.


D

90. A

B

91.

B

86.

B

87.
89.

C

82. A

83. A
85.

B

128. A
130.

C


2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×