Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (893)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.57 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].



x = 1 + 3t





Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = 1 + 3t
x = −1 + 2t
x = 1 + 7t
x = −1 + 2t

















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .

















z = 1 − 5t
z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 1. [4-1212d] Cho hai hàm số y =

Câu 3. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
3
2

6
Câu 4. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Câu 5. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 15, 36.
C. 20.
D. 24.
Câu 6. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a3 6
a
15
a
5
A.
.

B. a3 6.
C.
.
D.
.
3
3
3
Câu 7. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e
x2 − 3x + 3
Câu 8. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 2.
C. x = 0.
D. x = 1.
Câu 9. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.


D. m = 0.

Câu 10. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
B.
.
C. 5.
D. 68.
17
Trang 1/10 Mã đề 1


Câu 11. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

Câu 12.
√ Tìm giá trị lớn nhất của hàm
√ số y =
A. 2 3.
B. 2 + 3.




1
3|x−1|

C. 3.

x + 3 + 6√− x
C. 3 2.

= 3m − 2 có nghiệm duy

D. 2.
D. 3.

Câu 13. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.

2
4
1 + 2 + ··· + n
Câu 14. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 0.
2
Câu 15. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −15.
D. −9.
2n + 1
Câu 16. Tính giới hạn lim
3n + 2
1
2
3
C. .
D. .
A. 0.
B. .
2
2

3

Câu 17. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 4.
D. 108.
Câu 18. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).

Câu 19. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
[ = 60◦ , S O
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng



a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
17
19
19
Câu 21. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.

D. 4 − 2 ln 2.

Câu 22. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (3; 4; −4).
Trang 2/10 Mã đề 1


Câu 23. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.
! x3 −3mx2 +m
1
Câu 24. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
Câu 25. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.

D. .
A. 7.
B. 5.
C.
2
2
Câu 26. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
Câu 27. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 28. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b




x=t




Câu 29. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2

2
D. (x + 3) + (y + 1) + (z + 3) = .
C. (x − 3) + (y + 1) + (z + 3) = .
4
4
Câu 30. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Câu (III) sai.

D. Khơng có câu nào
sai.
[ = 60◦ , S A ⊥ (ABCD).
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a3 3
a
2
a
2

A.
.
B. a3 3.
C.
.
D.
.
6
12
4
x+3
Câu 32. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Trang 3/10 Mã đề 1


Câu 33. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C. a.

D.
.
A. .
3
2
2
Câu 34. Tính lim
x→3

x2 − 9
x−3

B. +∞.
C. −3.
D. 6.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 35. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017

2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
1
bằng
Câu 36. [1] Giá trị của biểu thức log √3
10
1
1
A. 3.
B. −3.
C. .
D. − .
3
3
A. 3.

Câu 37. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).

D. (1; +∞).

Câu 38. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.

B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 39. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 40. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 41. Tính lim
x→2

A. 3.

x+2
bằng?
x
B. 0.

C. 1.

D. 2.

Câu 42. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 0.
B. 1.
C. e2016 .
D. 22016 .
Câu 43. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A.
.
B. 3.
C. 2.
D. 1.
3
Câu 44. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3

2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 45. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
A.
.
B.
.
C.
.
D.
.

4913
68
4913
4913
Trang 4/10 Mã đề 1


Câu 46. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

a3 3
a
a3
3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
ln2 x
m
Câu 47. [3] Biết rằng giá trị lớn nhất của hàm số y =

trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 32.
D. S = 24.
cos n + sin n
Câu 48. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 49. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 50. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.

D. 20.

C. 12.


Câu 51. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
Câu 52. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. −1.
D. 1.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 53. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −5.
C. 0.
D. −2.
Câu 54. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.

D. 5.

Câu 55. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.

B. 20.

D. 8.

C. 30.

Câu 56. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 57. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .


Câu 58. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 59. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.


C. 12.

D. 8.

Câu 60. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.
D. {4; 3}.
a
1
Câu 61. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 1.
D. 7.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.

C.
.
D.
.
6
3
3
3
Trang 5/10 Mã đề 1


Câu 63. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 64. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 6 lần.
Câu 65. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 66. Hình nào trong các hình sau đây khơng là khối đa diện?

A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.

D. Hình lăng trụ.
d = 300 .
Câu 67. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3
3

3a 3
a 3
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
A. V =
2
2
Câu 68. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = 3S h.
D. V = S h.
A. V = S h.

B. V = S h.
2
3

Câu 69. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a 3
a3 3
3
.
B. a 3.
.
D.
.
A.
C.
3
12
4
Câu 70.√Thể tích của tứ diện đều √
cạnh bằng a


3
3

a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
12
2
Câu 71. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.1, 03
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3

(1, 01)3
triệu.
D.
m
=
triệu.
C. m =
(1, 12)3 − 1
(1, 01)3 − 1
0

0

0

Câu 72. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Câu 73. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 74. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 72.


D. 7, 2.

Câu 75. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Bát diện đều.
C. Thập nhị diện đều.

D. Nhị thập diện đều.

Câu 76. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 6/10 Mã đề 1


Z
C.

!0
f (x)dx = f (x).
Z

D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 1.
C. 3.


f (x)dx = F(x) + C.

Câu 77. [1-c] Giá trị biểu thức
A. 4.

Câu 78. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1

D. −8.

D.

3b + 3ac
.
c+2

Câu 79. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?


A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
C. y = log 14 x.
Câu 80. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
.
B. 6 3.
.
A.
C. 8 3.
D.
3
3

Câu 81. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
Câu 82. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.

B. 1.
C. 2.
Câu 83. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. − .
C. −2.
2
2

D. 3.

D. 2.

Câu 84. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 8 năm.
D. 9 năm.
Câu 85. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.


Câu 86. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.
B. 2.
C.
.
D. 2 13.
13
Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

C. 8 3.
D. 8 2.
A. 16.
B. 7 3.
Câu 88. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 3.
D. 1.
1
Câu 89. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?

x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Trang 7/10 Mã đề 1


Câu 90.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].

C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 91. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.

B. 13.
C. log2 2020.
D. log2 13.
Câu 92. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.

D. 12.

Câu 93.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
p
ln x
1
Câu 94. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .

D. .
9
3
9
3
2

Câu 95. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
A. √ .
C. 2 .
e
e
2 e

D.

1
.
2e3

Câu 96. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.


B. 1.

C. 0.

D. 2.

Câu 97. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.

D. 3.

Câu 98. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
b a2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.

D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 99. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4e + 2
4 − 2e
4 − 2e
Câu 100.
thức nào sau đây√khơng có nghĩa
√ Biểu
−3
0
A. (− 2) .
B.

−1.
C. 0−1 .
D. (−1)−1 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 101. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là



a3 3
a3 3
a3 2
2
A. 2a 2.
B.
.
C.
.
D.
.
24
12
24
Câu 102. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Có một hoặc hai.
D. Khơng có.

Câu 103. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).
x→a

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Trang 8/10 Mã đề 1



Câu 104.√ Xác định phần ảo của số phức z = ( 2 + 3i)2 √
B. −7.
C. 6 2.
A. −6 2.

D. 7.

d = 60◦ . Đường chéo
Câu 105. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 106. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 20 .(3)30
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4

4
4
4
Câu 107. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S√BC) bằng

2a 57
a 57
a 57
A. a 57.
.
C.
.
D.
.
B.
17
19
19
Câu 109. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.


1
3
3
A. .
B.
.
C. .
D. 1.
2
2
2
 π
Câu 110. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
e .
B. e .
C.
e .
D. 1.
A.
2
2
2
Câu 111. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).

D. (−∞; 6, 5).

Câu 112. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 113. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
3
2

2
π
Câu 114. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
Câu 115. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.
Trang 9/10 Mã đề 1


Câu 116. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 117. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.

B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 118.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
4x + 1
bằng?

Câu 119. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −1.

C. 4.

D. −4.

Câu 120. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 121. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
Câu 122. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.

Câu 123.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
A.
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 124. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

Câu 125. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.

B. 1.

C. 0.

un
bằng
vn
D. −∞.

Câu 126. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 10/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 127. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.


C. 8.

D. 6.

Câu 128. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 129.! Dãy số nào sau đây có !giới hạn là 0?
n
n
1
5
B.
.
A. − .
3
3

!n
4
C.
.
e

!n

5
D.
.
3

Câu 130. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.


5.

B

6. A

7.

B

8.

9.

B

10.

B
D
D
B

11. A

12.

C

13. A


14.

C

15.

B

16.

D
D

17.

C

18.

19.

C

20.

21.

B


23.

C

C

22.

B

24.

B

25.

D

26.

C

27.

D

28.

C


29.
31.

D

30.

C
D

32.

C

33.

C

34.

D

35.

C

36.

D


37. A

38.

39.

40. A

C

41.

D

43.

42. A

C

45.

B

D

44.

D


46.

D

47.

C

48.

C

49.

C

50.

C

51. A

52.

53.

C

54. A


55.

C

56.

57. A

58. A

59. A

60.

B
C
B

61.

D

62.

63.

D

64.


B

66.

B

65.
67.

C

68.

B
1

D

D


69. A

70.

71.

D

72. A


73.

D

74. A

C

75.
77.

76. A
78.

D

79. A

B
B

C

82.

83.

C


84.
D

B
D

93. A

90.

C

92.

C

94. A

95.

C

96.

97.

C

98. A


99. A
101.

D
C

103.

D

105.
B

109.

D

C

102.

C

104.

C

106.

C


108.

C

110.

C

112. A

113. A

114.

115.

D

120. A

C

122.
B

124.

125.


C

126.

127.

C

128.

129.

C

118.

B

121. A
123.

D

116.

C

119.

D


100.

111. A

117.

C

88. A

91.

107.

D

86.

87. A
89.

D

80.

81.
85.

C


B

130. A

2

D
B
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×