Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 2 (315)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.81 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

2

sin x
Câu 1.
+ 2cos x lần lượt√là
√ [3-c] Giá trị nhỏ nhất và √giá trị lớn nhất của hàm số f (x) = 2
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.

Câu 2. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.

D. x = −8.

Câu 3. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1


1
1
B. m ≥ .
C. m > .
D. m < .
A. m ≤ .
4
4
4
4
Câu 4. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Bốn cạnh.
Câu 5. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 6. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.

D. 0.

Câu 7. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 8. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.

C. 3.

D. 2.

[ = 60◦ , S O
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19

x
Câu 10. [1] Đạo hàm của hàm số y = 2 là
1
1
.
B. y0 = 2 x . ln x.
C. y0 = x
.
D. y0 = 2 x . ln 2.
A. y0 =
ln 2
2 . ln x
Câu 11. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.

=
=
.
B.
=
=
.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
[ = 60◦ , S O
Câu 12. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng



2a 57
a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Câu 13. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Trang 1/10 Mã đề 1


Câu 14. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng



20 3
14 3
.
B.
.
C. 6 3.
A.
D. 8 3.
3
3
Câu 15.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
B. 3.
C. 2.
D. 1.
A. 5.
Câu 16. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n

1
C. √ .
n

D.


sin n
.
n

Câu 17. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C.
; +∞ .
A. −∞; − .
2
2
2

!
1
D. − ; +∞ .
2

Câu 18. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.

D. 30.


C. 20.

Câu 19. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 20. Hàm số nào sau đây không có cực trị
x−2
1
A. y =
.
B. y = x3 − 3x.
C. y = x + .
D. y = x4 − 2x + 1.
2x + 1
x
Câu 21. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
q
2
Câu 22. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 23. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

Câu 24. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. x = 1.

D. x = 2.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 25. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
9
1
2

A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 6.
D. 8.
Câu 27. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. 4.

D. −4.

Câu 28. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Trang 2/10 Mã đề 1



Câu 29. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 30. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 31. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.

B. 8.
Câu 32. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
n2
2n − 3
bằng
Câu 33. Tính lim 2
2n + 3n + 1
A. −∞.
B. +∞.

C. 12.
C. un =

D. 30.
1 − 2n
.
5n + n2

C. 0.


D. un =

n2 − 2
.
5n − 3n2

D. 1.

Câu 34. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m ≤ 3.
D. m < 3.
Câu 35. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n

1
= 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
nk
Câu 36. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
C. lim

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).

(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
2
2
4
Câu 38. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.

B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 39.
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
A. 10.
B. 2.
C. 2.
D. 1.
Trang 3/10 Mã đề 1


1
Câu 40. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 42. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng

1
1
1
A. 4.
B. .
C. .
D. .
4
8
2
Câu 43. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là 4.
Câu 44. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 45. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
20
10
40
C50

.(3)30
C50
.(3)20
C50
.(3)40
C50
.(3)10
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 46. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.
C. 3.
D. 2.
12 + 22 + · · · + n2

Câu 47. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. +∞.
D. .
3
3
Câu 48. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+2
c+3
c+1
Câu 49. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).

C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
2

Câu 50. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 3 − log2 3.

x2 − 9
Câu 51. Tính lim
x→3 x − 3
A. 3.
B. −3.

C. 6.

D. +∞.

Câu 52. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.

C. 8.

D. 20.
Trang 4/10 Mã đề 1



Câu 53. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.
D. 3, 55.
Câu 54. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log π4 x.
A. y = log 41 x.
C. y = log √2 x.

D. y = loga x trong đó a =


3 − 2.

Câu 55. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Không thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 56. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 12.

B. 27.
C.
2
Câu 57. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B.
.
C. 2a 6.
D. a 3.
2

Câu 58. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. [3; 4).
C. 2; .
D. (1; 2).
2

2
Câu 59. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3
3
2
Câu 60. Cho hàm số y = x − 2x + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 61. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.

C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
D.
.
6
3
3
log(mx)
Câu 63. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
x
9

Câu 64. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. 2.
C. −1.
D. .
2

Câu 65. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3

6
2
Trang 5/10 Mã đề 1


Câu 66. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3
a3 3
3
.
C.
.
D.
.
A. a .
B.
6
2
3
Câu 67. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.
Câu 68. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó

là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .
1

Câu 69. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = R.

Câu 70. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
C.
A.
.
B. 2a 2.
.
D. a 2.
4

2
Câu 71. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 72. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
log2 240 log2 15

+ log2 1 bằng
Câu 73. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 3.
C. −8.
D. 4.
Câu 74. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.

C. 2.

Câu 75. Hàm số y = x3 − 3x2 + 4 đồng biến trên:

A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

D. 24.

Câu 76. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3

3
Câu 78. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Trang 6/10 Mã đề 1


d = 120◦ .
Câu 79. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.
D.
.
2
Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.

C.
.
D.
.
6
12
12
4
x+2
Câu 81. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 82. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

7n2 − 2n3 + 1
Câu 83. Tính lim 3

3n + 2n2 + 1
7
2
A. .
B. - .
C. 0.
D. 1.
3
3
Câu 84. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 85. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
A. 2.
B. .
C. −2.
2
log 2x
Câu 86. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
0
0
.

C.
y
=
.
.
B.
y
=
A. y0 =
x3
x3 ln 10
2x3 ln 10
Câu 87. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 1.

C. 2.

1
D. − .
2

D. y0 =
1
3|x−1|

1 − 4 ln 2x
.

2x3 ln 10

= 3m − 2 có nghiệm duy

D. 4.

Câu 88. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 2
a3 3
a 6
A.
.
B.
.
C.
.

D.
.
48
48
16
24
Câu 90. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. [−3; 1].
D. (−∞; −3].
Trang 7/10 Mã đề 1


Câu 91. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.

D. Hình chóp.

Câu 92. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 18 tháng.
D. 15 tháng.

Câu 93. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1728
1079
1637
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Z 1
6
2
3
Câu 94. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. −1.


C. 6.

D. 4.

Câu 95. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 5.
B. 7.
C.
.
D. .
2
2
Câu 96. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
a 3
8a 3
4a 3

A.
.
B.
.
C.
.
D.
.
3
9
9
9
x−1
Câu 97. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
B. 2 2.
C. 2.
D. 6.
A. 2 3.
Câu 98. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .

B. m ≤ .
C. m > .
D. m < .
4
4
4
4
π
Câu 99. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 2.
C. T = 3 3 + 1.
D. T = 4.
!
!
!
x
4
1
2
2016
Câu 100. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f

4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017
Câu 101. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 102. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 32.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 22.

D. S = 135.


Câu 103. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n lần.
D. n3 lần.
Câu 104. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Tứ diện đều.
C. Nhị thập diện đều. D. Thập nhị diện đều.
Trang 8/10 Mã đề 1


Câu 105. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.

D. xy0 = −ey − 1.

Câu 106. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 107. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 108. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. − < m < 0.
D. m > − .
4
4
x
x
x
Câu 109. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
!x
1


Câu 110. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
D. − log3 2.
Câu 111. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.

C. 8.

D. 6.

x2 +2x

Câu 112. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. −5.
B. −6.
C. 5.
D. 6.
Z 3
x
a
a
Câu 113. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = −2.
D. P = 16.
x−2
Câu 114. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
C. −3.
D. 1.
3
Câu 115. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
Câu 116. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.
D. 12 m.
Câu 117. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.

B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
log 2x
Câu 118. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
Trang 9/10 Mã đề 1


!
1

1
1
Câu 119. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. .
C. 2.
D. .
2
2
2
Câu 120. Tính mơ đun của số phức √
z biết (1 + 2i)z = 3 + 4i. √
√4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 121. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 1.
C. 7.

D. 4.
1
Câu 122. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 123. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
Câu 124. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 2
a 5
.
B.

.
C.
.
D.
.
A.
16
8
32
4
Câu 125. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 126. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 10.
D. P = 21.
Câu 127. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 128. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.


Câu 129. Xác định phần ảo của số√phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
Câu 130. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 12.

D. 2.
D. 7.
D. 20.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3. A


4.

5.
7.

D
C
D

6.

C
B

8.

B

9.

C

10.

11.

C

12.


C

13.

C

14.

C

15.

C

16.

17.
19.

D
D

22.

B

24. A

C


25.

B

26.

27.

B

28. A

29.

D

30.

31.

D

32.

C

35. A
37.

C


20. A

21.

33.

B

18.

B

23.

D

B
D
C

34.

B

36.

B

38. A


B

39.

D

40.

B

41.

D

42.

B

43. A

44. A

45.

C

46.

47.


D

48.

49.

D

50. A

51.
53.

C
B

52. A

C
B

54.

55. A

56.

57. A


58. A

59.

D

60.

61.

D

62.

C
D
B
C

63.

B

64. A

65.

B

66.


C

68.

C

67.

D
1


69. A

70.

C

71.

C

72.

B

73.

C


74.

B

75.

C

76. A

77.

D

78.

79.

D

80.

81.
83.

82.

C
B


85.

86.

87.

B

88.

89.

B

90.

91. A

92. A

93. A

94.

95.

D

98.


99.

D

C
B
D
C
D
C
B

100.

C

103.

102.

D
B

104.

D

105.


C

106.

107.

C

108.

B

D
B
D

110.

111.

D

C

112. A

113. A

114.


115. A

116. A

117.

B

96.

97. A

109.

C

84.
C

101.

D

B

D

118. A

119.


C

120.

D

121.

C

122.

D

D

123.
125.
127.
129.

C
B
C

2

124.


B

126.

B

128.

C

130.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×