Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (58)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.53 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

Câu 2. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. y0 = 1 + ln x.
D. y0 = x + ln x.



x=t





Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
C. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
D. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
Câu 4. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.


D. {5; 3}.

Câu 5. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).
Câu 6. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 3.

Câu 7. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 8. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1

A. V = 3S h.
B. V = S h.
C. V = S h.
3

1
D. V = S h.
2

Câu 9. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 10. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.

D. Hai mặt.
Trang 1/10 Mã đề 1


Câu 11. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.

C. 210 triệu.
D. 216 triệu.
Câu 12. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. +∞.

B. 2.

C. 1.

D. 0.

Câu 13. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B. 1.
C. 2.
D.
.

3


Câu 14. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x


A. 3.
B. 2 + 3.
C. 3 2.
D. 2 3.
Câu 15. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).

D. [1; 2].

log 2x

x2
1 − 2 log 2x
1 − 2 ln 2x

B. y0 =
.
.
C. y0 = 3
3
x
x ln 10

Câu 16. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 4 ln 2x
.
2x3 ln 10

D. y0 =

2x3

1
.
ln 10

2

Câu 17. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 5.


D. 8.

Câu 18. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 19. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 20. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a


Câu 21. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim [ f (x) + g(x)] = a + b.
x→+∞

4

Câu 22. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
2
5
B. a 3 .
C. a 3 .
A. a 8 .

√3


a2 bằng
7

D. a 3 .

Câu 23. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim

1
= 0 với k > 1.
nk

1
B. lim √ = 0.
n
D. lim qn = 1 với |q| > 1.
Trang 2/10 Mã đề 1


Câu 24. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d ⊥ P.
1

Câu 25. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.

B. D = (−∞; 1).
C. D = R.

D. D = (1; +∞).

Câu 26. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 9.
B. 0.
2

C. 5.
D. 7.
√3
Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
Câu 28.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 9.
D. 8.
! x3 −3mx2 +m

1
Câu 29. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 30. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 3.

D. 5.

Câu 31. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C. 2a 2.
D.
.

A. a 2.
2
4
2

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B.
.
C. 2 .
3
2e
e
2 e

D.

2
.
e3

Câu 33. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 34. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị

A. m > 1.
B. m > −1.
C. m ≥ 0.

D. m > 0.

Câu 35. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
2
x − 3x + 3
Câu 36. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 1.
C. x = 2.
D. x = 0.

Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
x+2
Câu 38. Tính lim
bằng?

x→2
x
A. 2.
B. 3.
C. 0.
D. 1.
x+3
Câu 39. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Trang 3/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 40. [3-1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0 ∨ m = 4.

Câu 41. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 5 mặt.

Câu 42. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 43.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 44. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
Câu 45. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A.
10 ln x
x
2
x −9
Câu 46. Tính lim
x→3 x − 3
A. −3.
B. +∞.
1 − 2n
Câu 47. [1] Tính lim
bằng?
3n + 1
1
A. 1.
B. .
3

C. Khối 20 mặt đều.
C. y0 =


C. 6.

C.

2
.
3

1
.
x ln 10

D. Khối bát diện đều.
D. y0 =

ln 10
.
x

D. 3.
2
D. − .
3

π
Câu 48. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √

thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.

Câu 49. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
6
36
18
6

1
Câu 50. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.

Câu 51. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


3
a 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4

6

Câu 52. Xác định phần ảo của số phức z = ( 2 + 3i)2 √

A. 7.
B. −7.
C. 6 2.
D. −6 2.
9t
Câu 53. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vơ số.
B. 0.
C. 2.
D. 1.
Trang 4/10 Mã đề 1


Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
C. − .
A. − .
2e
e
e

log √a 5
Câu 55. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. 5.
B. .
C. 25.
5
Câu 56. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
7n2 − 2n3 + 1
Câu 57. Tính lim 3
3n + 2n2 + 1
2
B. 1.
A. - .
3
Câu 58. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C.

7
.
3


C. 8.

D. −e.

D. 5.

D. 0.
D. 12.

Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 32π.
D. 16π.
Câu 60. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 61. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 62. Tính lim

x→+∞


x−2
x+3

2
D. − .
3
0 0 0
Câu 63. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B.
.
C. 6 3.
D. 8 3.
3
3
Câu 64. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 7.
D. 1.

A. −3.

B. 2.

C. 1.

Câu 65. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 66. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 5/10 Mã đề 1



Câu 67. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).
x−3
Câu 68. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
Câu 69. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. (I) và (II).

D. Cả ba mệnh đề.

C. 0.

D. +∞.

C. 8.


D. 30.

d = 300 .
Câu 70. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.

3
3

3a 3
a 3
.
B. V =
.
C. V = 3a3 3.
A. V =
D. V = 6a3 .
2
2
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 71. Cho
x2
1
A. 1.
B. 0.

C. −3.
D. 3.
Câu 72. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 73. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

D. {3; 4}.

Câu 74. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.

D. 4.

C. 3.

Câu 75. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.


Câu 76. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
B. m = ±1.
C. m = ±3.
D. m = ± 3.
A. m = ± 2.
3

2

x

Câu 77. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
2
6

3
Câu 78. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

Câu 79. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

x→a

C. Khối lập phương.

x→b

D. Khối bát diện đều.

Câu 80. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
B. 27.
C. 12.
D. 18.
A.
2
Trang 6/10 Mã đề 1


3
2
Câu 81. Giá

√ trị cực đại của hàm số y√= x − 3x − 3x + 2
B. 3 − 4 2.
C. −3 − 4 2.
A. 3 + 4 2.


D. −3 + 4 2.

d = 120◦ .
Câu 82. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.

2
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
!4x
!2−x
3
2


Câu 84. Tập các số x thỏa mãn
3 # 2
#
"

!
"
!
2
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
; +∞ .
3
5
3
5
log(mx)
= 2 có nghiệm thực duy nhất
Câu 85. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 86. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vơ nghiệm.
D. 3.
1

Câu 87. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (−∞; 3).
D. (1; +∞).
1
Câu 88. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp
√ S .ABCD là

3
3
3

a 3
a 2
a 3
C.
A.
.
B. a3 3.
.
D.

.
2
4
2

Câu 90. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. (1; 2).
B. [3; 4).
C.
;3 .
D. 2; .
2
2
3

Câu 91. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

D. e5 .

[ = 60◦ , S O

Câu 92. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19



x = 1 + 3t




Câu 93. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương


 trình là









x = −1 + 2t
x = 1 + 3t
x = 1 + 7t
x = −1 + 2t

















A. 
.
B. 
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .
y=1+t

















z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Trang 7/10 Mã đề 1


Câu 94. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.

D. 3.

Câu 95. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 96. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.

x
Câu 97.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. .
C. .
D. 1.
A.
2
2
2

Câu 98. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 99. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 100. Giá trị của lim (3x2 − 2x + 1)
A. +∞.


x→1

B. 3.

Câu 101. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 =
ln 2

C. 1.

D. 2.

C. y0 = 2 x . ln 2.

D. y0 =

1
.
2 x . ln x

Câu 102. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .

B.
.
C. −
.
D.
.
16
100
100
25
a
1
Câu 103. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
Câu 104. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.

C. 144.

D. 24.

Câu 105. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 106. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )

A. 13.
B. log2 13.
C. 2020.
D. log2 2020.
 π
Câu 107. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
A.
e .
B. e .
C. 1.
D.
e .
2
2
2
Câu 108. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).

D. (−∞; 1).
!
3n + 2
2

Câu 109. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Trang 8/10 Mã đề 1


Câu 110. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
D. (2; 2).
!
1
1
1
Câu 111. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
D. 0.
A. 2.
B. 1.
C. .

2
Câu 112.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 2.
C. 3.
D. 1.


Câu 113. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
x2 − 5x + 6
x→2
x−2
B. 1.

Câu 114. Tính giới hạn lim
A. −1.

C. 5.

D. 0.

1


Z

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

Câu 115. Cho
0

1
1
B. 1.
C. .
D. 0.
A. .
2
4
Câu 116. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.
0 0 0 0
Câu 117. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab

1
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 118. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 3.
C. 5.

D. 2.

 π π
Câu 119. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.

3

Câu 120. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 6 mặt.
Câu 121. Tính lim

x→+∞

A. 3.

x+1
bằng
4x + 3
1
B. .
4

C. 1.

Câu 122. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].

D. 9 mặt.


D.
log23

1
.
3
q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 2].
Trang 9/10 Mã đề 1


Câu 123. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là



2a3 3
a3 3
a3 3
3
A.

.
B.
.
C. a 3.
D.
.
3
3
6
Câu 125. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(−4; 8).
!x
1

Câu 126. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. − log3 2.
Câu 127. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim = 0.

D. lim qn = 0 (|q| > 1).
n
!
!
!
4x
1
2
2016
Câu 128. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
x−1 y z+1
Câu 129. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 130. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.

C

3. A

4.

C

5. A

6. A

7.

B
C

9.
11.

B

10. A
D

12.

B

C

13.
15.

8.

B

14.

C

16.

C

17. A

18. A

19. A

20. A

21. A

22.

B

B

23.

D

24.

25.

D

26. A

27.
29.
31.

28. A

C
D

30. A

B

32.

C


33. A

34.

B

35. A

36.

B

D

37.
39.

38. A

C

41. A

40.

B

42.


B

43.

C

44.

C

45.

C

46.

C

48.

C

47.

D

49.
51.

C


50.

B

52.

53.

C

54. A

55.

C

56.

57. A
60.

B
C
D

58. A
61.

C


63.

C

64. A

65.

C

66. A

67.

C

62.

68.

B
C

69.

C
1

B



70.

B

71.

72.

B

73.

74.

D

C
B
C

75.

76. A

77. A

78. A


79.

D

81.

D

80.

D

82.

C

83.

84.

C

85.

86.

B

D


87. A

88.

D

90.

C

89. A
91.

C

D

92.

D

93.

94.

D

95.

D


96.

D

97.

D

98.

99.

B

100.

D

B

101.

102.

C

103.

104.


C

105.

106.

B

C
B
C
D

107.

B

108.

C

109.

B

110.

C


111.

B

113.

B

112.

B

114. A

115. A

116.

117. A

C

118.

D

119.

B


120.

D

121.

B

122. A
124.

123. A
B

125.

126. A

127.

128. A

129.

130.

C

2


C
D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×