TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x = 1 + 3t
Câu 1. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+
7t
x = −1 + 2t
A.
C.
.
D.
y = −10 + 11t . B.
y = 1 + 4t .
y=1+t
y = −10 + 11t .
z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
Câu 2. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
3
2
x
Câu 3. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 2 √
B. m = ±1.
C. m = ±3.
D. m = ± 3.
A. m = ± 2.
[ = 60◦ , S O
Câu 4. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√
√ BC) bằng
√
a 57
2a 57
a 57
A.
.
B. a 57.
.
D.
.
C.
17
19
19
Câu 5. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
D.
.
B.
.
C. a 6.
.
6
3
2
√
√
Câu 6.√Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√
−x
√
A. 2 3.
B. 2 + 3.
C. 3 2.
D. 3.
!
1
1
1
Câu 7. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
D. .
A. 2.
B. +∞.
C. .
2
2
Câu 8. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình chóp.
D. Hình lập phương.
√
Câu 9. Thể
√ tích của khối lập phương có cạnh bằng a 2
3
√
√
2a 2
A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .
3
√
Câu 10. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
√
Câu 11. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
Trang 1/10 Mã đề 1
√
3a 58
B.
.
29
3a
A.
.
29
√
3a 38
C.
.
29
√
a 38
D.
.
29
√
Câu 12. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
3
πa3 6
πa3 3
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
3
2
x2
Câu 13. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = e, m = 0.
D. M = , m = 0.
e
e
Câu 14. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.
C. .
D. 1.
2
2
Câu 15. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 26.
B. 2.
C.
.
D. 2 13.
13
d = 60◦ . Đường chéo
Câu 16. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
a3 6
2a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 17. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
5
13
.
B.
.
C. −
.
D. − .
A.
100
25
100
16
Câu 18. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
Câu 19.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
.
B.
.
A.
4
2
√
a3 2
C.
.
12
√
a3 2
D.
.
6
Câu 20. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 21. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.
Câu 22. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. −∞.
C. 0.
D. +∞.
Trang 2/10 Mã đề 1
Câu 23. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 25. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
√
2
Câu 26. Xác định phần ảo của số
√ phức z = ( 2 + 3i)
√
A. 7.
B. 6 2.
C. −6 2.
D. −7.
Câu 27. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
16
48
Câu 29. Phát biểu nào sau đây là sai?
1
= 0.
nk
1
C. lim un = c (un = c là hằng số).
D. lim = 0.
n
0 0 0 0
Câu 30. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
15
6
A. lim qn = 0 (|q| > 1).
B. lim
Câu 31. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
C. Câu (III) sai.
D. Câu (II) sai.
Câu 32. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 5
a3 15
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Câu 33. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 3/10 Mã đề 1
Câu 34. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
√
√
Câu 35. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 2.
D. 0.
q
2
Câu 37. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
1
bằng
Câu 38. [1] Giá trị của biểu thức log √3
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
Câu 36. [4] Xét hàm số f (t) =
Câu 39. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 40. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 41. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
Câu 42. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 43. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 44. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.
D. 10.
Câu 45. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
Câu 46. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].
D. [6, 5; +∞).
Trang 4/10 Mã đề 1
Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 48. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
Câu 49. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R.
x2 +x−2
C. 20.
D. 10.
C. D = (−2; 1).
D. D = R \ {1; 2}.
là
Câu 50. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.
D. 6 mặt.
Câu 51. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√
√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3
√
a 3
a 2
a 3
B.
.
C.
.
D.
.
A. a3 3.
4
2
2
Câu 53. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
cos n + sin n
Câu 54. Tính lim
n2 + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 55. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
D. 1.
Câu 56. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.
D. 8.
C. 12.
Câu 57. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 58. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 59. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.
D. m = −2.
Câu 60. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 61. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
là
√
3
3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .
3
9
3
Trang 5/10 Mã đề 1
Câu 62. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 135.
D. S = 24.
Câu 63. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
!
1
1
1
Câu 64. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. 2.
D. .
2
Câu 65. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
√
√
4n2 + 1 − n + 2
Câu 66. Tính lim
bằng
2n − 3
3
B. +∞.
C. 2.
D. 1.
A. .
2
√
Câu 67. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 64.
D. 63.
Câu 68. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −4.
A. −7.
B. −2.
C.
27
ln x p 2
1
Câu 69. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
3
9
Câu 70. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 71. Dãy số nào có giới hạn bằng 0?
!n
6
2
A. un = n − 4n.
B. un =
.
5
!n
−2
C. un =
.
3
D. un =
n3 − 3n
.
n+1
Câu 72. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Trang 6/10 Mã đề 1
Câu 73. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 74. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 76. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).
D. (1; −3).
Câu 77. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
2
3
Câu 78.
! nào sau đây sai?
Z Mệnh đề
0
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 79. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 80. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vơ nghiệm.
Câu 81. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 3.
C. 1.
D. 2.
Câu 82. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
[ = 60◦ , S A ⊥ (ABCD).
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là
√
3
3
3
√
a
2
a 3
a 2
.
B.
.
C. a3 3.
D.
.
A.
6
4
12
Câu 84. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 85. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.
D. 8 mặt.
Câu 86. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.
D. 12.
C. 30.
Câu 87. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (−∞; +∞).
B. [1; 2].
C. (1; 2).
D. [−1; 2).
Câu 88. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
D. Khối tứ diện đều.
3
2
C. Khối lập phương.
Trang 7/10 Mã đề 1
Câu 89. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 90. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
B. lim un = c (Với un = c là hằng số).
1
1
D. lim k = 0 với k > 1.
C. lim √ = 0.
n
n
Câu 91. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.
D. Có hai.
x−1
Câu 92. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 93. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) − g(x)] = a − b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
◦
Hai mặt bên
√hợp với đáy một góc 303 .√Thể tích khối chóp S .ABCD
√ là
√ (S BC) và (S AD) cùng
3
3
3
8a 3
8a 3
a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 95. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 96. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.
C. 6.
D. 10.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 97. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 1.
C. 0.
D. −5.
! x3 −3mx2 +m
1
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m , 0.
D. m = 0.
1
Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 100. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
Câu 101. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.
C. 20.
D. 30.
Câu 102. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.
Trang 8/10 Mã đề 1
Câu 103. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
1 − n2
bằng?
Câu 104. [1] Tính lim 2
2n + 1
1
A. .
B. 0.
2
Câu 105. √
Tính mơ đun của số phức z√biết (1 + 2i)z2
A. |z| = 5.
B. |z| = 2 5.
2−n
bằng
Câu 106. Giá trị của giới hạn lim
n+1
A. 2.
B. −1.
1
.
3
= 3 + 4i. √
4
C. |z| = 5.
1
D. − .
2
C. 0.
D. 1.
C.
D. |z| = 5.
Câu 107. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 108. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
2
2
2
1 + 2 + ··· + n
Câu 109. [3-1133d] Tính lim
n3
1
2
C. 0.
D. .
A. +∞.
B. .
3
3
2
Câu 110. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.
D. 3.
Câu 111. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
π
Câu 112. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 2.
2n2 − 1
Câu 113. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. 0.
D. .
3
Câu 114. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = 4 + .
D. T = e + 1.
e
e
Câu 115. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B.
.
C. 1.
D. 2.
2
2
x+1
Câu 116. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. 3.
C. .
D. .
3
4
Trang 9/10 Mã đề 1
x+2
Câu 117. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
!
!
!
x
4
1
2
2016
Câu 118. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2016.
C. T = 2017.
D. T =
.
2017
1
Câu 119. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Z 1
Câu 120. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2
0
B. 1.
C.
1
.
4
D. 0.
x=t
Câu 121. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
D. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
C. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
6
Câu 122. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 2.
B. 6.
C. 4.
D. −1.
Câu 123. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 4.
D. 2.
Câu 124. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.
C. 8.
D. 4.
Câu 125.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
3
A.
.
B.
.
C.
.
D. .
2
12
4
4
1 − xy
Câu 126. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Câu 127. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều. D. Tứ diện đều.
Câu 128. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Trang 10/10 Mã đề 1
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 46cm3 .
D. 27cm3 .
Câu 130. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 8 lần.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
4.
B
5. A
6.
7. A
8. A
9.
11.
C
2.
10.
C
B
D
C
B
C
12.
13.
C
14. A
15.
C
16.
17.
C
18. A
19.
C
20.
21.
C
22. A
23.
D
B
C
24.
D
25. A
26.
B
27. A
28.
B
29. A
31. A
32.
B
33. A
35.
D
36.
37.
D
38. A
39.
41.
40.
C
B
43. A
45.
D
42.
B
44.
B
B
50. A
51.
B
52.
53.
D
D
54.
55. A
C
56. A
58. A
B
59.
D
60.
61. A
C
62. A
64. A
B
66.
65. A
67.
C
48. A
49.
63.
C
46.
47. A
57.
C
B
69. A
1
D
68.
B
70.
B
71.
72. A
C
D
73.
74.
75. A
76. A
77.
D
79. A
81.
83.
78.
B
80.
B
82. A
C
84.
B
85. A
86. A
87. A
88.
89.
C
B
C
94.
C
C
C
96.
97.
C
98.
99. A
D
100. A
101.
105.
C
92.
95.
103.
C
90. A
D
91.
93.
B
D
102.
B
104.
B
106.
C
107. A
D
109.
B
108.
C
110.
C
111.
C
112. A
113.
C
114. A
115.
D
116.
117.
D
118. A
119.
D
120. A
121. A
D
122.
D
C
123.
C
124. A
125.
C
126.
C
128.
C
127. A
129.
130.
D
2
D