Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 3 (340)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.97 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1 3
x − 2x2 + 3x − 1.
3
C. (1; +∞).
D. (−∞; 1) và (3; +∞).

Câu 1. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

B. (−∞; 3).
x−1
Câu 2. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
B. 6.
C. 2.
D. 2 2.
A. 2 3.
Câu 3. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √


với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
48
24
8
24
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 10a3 .

D. 40a3 .
3
Câu 5. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.
D. 10 năm.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 6. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 7. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
A. 2 3, 4 3, 38.
Câu 8. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là

a3
a3
a3
3
A. a .
B.
.
C.
.
D.
.
12
6
24
x2 − 3x + 3
Câu 9. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 2.
D. x = 0.
q
2
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].

C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 11. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.

Câu 12. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Trang 1/10 Mã đề 1


Câu 13. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
loga 2

log2 a
Câu 14. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
7
5
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
A.
3
3
3
x2
Câu 15. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 1.
e
e

Câu 16. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 8.
B. 3 3.
C. 9.
D. 27.
2
x − 12x + 35
Câu 17. Tính lim
x→5
25 − 5x
2
2
B. .
C. −∞.
D. +∞.
A. − .
5
5
Câu 18. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2

Câu 19. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−1; 1).
D. (−∞; 1).
Câu 20. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 5.

C. 2.

D. 3.
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 22. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2

c+2
c+1
!x
1
1−x
Câu 23. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. log2 3.
C. 1 − log2 3.

D.

3b + 2ac
.
c+3

D. − log2 3.

Câu 24. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
2n + 1
Câu 25. Tính giới hạn lim
3n + 2
1

3
2
A. .
B. .
C. 0.
D. .
2
2
3
Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 2/10 Mã đề 1


Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng

1
A. − .
B. −2.
C. 2.
2
Câu 28. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.


Câu 29. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
A. 3.
B. 3 2.
C. 2 + 3.

D.

1
.
2

D. m = −3.

D. 2 3.

Câu 30. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 31.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z

Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 32. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.

Câu 33. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 4.
C. 108.
D. 36.
Câu 34. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
Câu 35. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
Câu 36. [1] Đạo hàm của làm số y = log x là
1
ln 10

A. y0 = .
B. y0 =
.
x
x

D. Ba cạnh.

1
D. y0 =
.
x ln 10
!
3n + 2
2
Câu 37. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
C.

1
.
10 ln x

Câu 38. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ

C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
B. 1.
C. 2.
D.
A. 3.
.
3
Câu 39. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.

D. −3.
Trang 3/10 Mã đề 1


9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .

A. 2.
B. 0.
C. 1.
D. Vơ số.
4x + 1
bằng?
Câu 41. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
1 − 2n
Câu 42. [1] Tính lim
bằng?
3n + 1
2
2
1
B. − .
C. 1.
D. .
A. .
3
3
3
1
Câu 43. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.

B. 0 < m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 40. [4] Xét hàm số f (t) =

2

Câu 44. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 4.

D. 2.

Câu 45. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
x+2
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?

A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 46. Giá trị lớn nhất của hàm số y =

Câu 48. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
C. 18.
D. 27.
A. 12.
B.
2
Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 50. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 51.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.

0dx = C, C là hằng số.

D.


dx = x + C, C là hằng số.

Câu 52. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
C. D = R.
2

D. D = R \ {1; 2}.
Trang 4/10 Mã đề 1



Câu 53. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
2

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B.
.
C.
.

2e3
e2
2 e
Câu 55. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.

C. 12.

D.

2
.
e3

D. 6.

Câu 56. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 57. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.

Câu 58. Thể tích của khối lập phương có cạnh bằng a 2




2a3 2
3
3
3
.
A. V = a 2.
B. V = 2a .
C. 2a 2.
D.
3
2

Câu 59. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 6.

D. 7.

Câu 60. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .

4
4
4
4
Câu 61. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. (4; +∞).
D. [6, 5; +∞).
Câu 62. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 63. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.
D. {3; 3}.
x−3 x−2 x−1
x
Câu 64. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. (2; +∞).
D. [2; +∞).
Câu 65. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
2

Câu 66. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log3 2.

Câu 67. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 68. Tìm m để hàm số y =
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Trang 5/10 Mã đề 1


Câu 69. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 70. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).

1
= 0.
n
D. lim un = c (un = c là hằng số).
ln x p 2
1
Câu 71. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3

8
1
8
1
A. .
B. .
C. .
D. .
9
3
3
9
B. lim

Câu 72. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 73. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối 20 mặt đều.

D. Khối tứ diện đều.

Câu 74. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.

D. 0.
Câu 75. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 76. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 8.

D. Khối 20 mặt đều.

D. 5.

Câu 77. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. 62.
D. Vô số.
Câu 78. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.
D. m , 0.

Câu 79. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6
6
18
36
Câu 80. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 4.

C. 6.

D. 10.


Câu 81. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 82. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Trang 6/10 Mã đề 1


log 2x

Câu 83. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.

C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 84. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 85. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. 2.

C. Vơ nghiệm.
D. 1.
Câu 86. Tính lim

2n2 − 1
3n6 + n4

2
.
3
ln2 x
m
Câu 87. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
1
Câu 88. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.

A. 2.

B. 1.

C. 0.

D.

Câu 89. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
D. .
A. 3.
B. 1.
C. .
2
2
x−3
Câu 90. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.

D. ln 14.
Câu 92. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (II) và (III).

Câu 93. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 34.
C.
.
D. 68.
17
2
x −9

Câu 94. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 6.
D. 3.
Trang 7/10 Mã đề 1


Câu 95. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 1.

D. 2.

Câu 96. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
A. − .
B.
.
3
3

!n
4
C.

.
e

!n
5
D.
.
3

C. 0.

D. 2.

Câu 97. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

Câu 98. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
C.

.
B. a 6.
.
D.
.
2
3
6
Câu 99. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Khơng tồn tại.
C. 13.
D. 9.
3a
, hình chiếu vng
Câu 100. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .
B. .
C.
.
D.
.

4
3
3
3
Câu 101. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
D. −1 + sin x cos x.



x = 1 + 3t




Câu 102. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x = 1 + 3t
x = −1 + 2t
x = 1 + 7t
x = −1 + 2t
















A. 
B. 

.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .
















z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 103. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.

D. n lần.
Câu 104. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
12
4
Câu 105. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 106. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.

D. P = 21.
Câu 107. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 108. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 32π.
D. 8π.
Trang 8/10 Mã đề 1


Câu 109. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
q

Câu 110. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 111. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 6.

D. 8.

[ = 60◦ , S O
Câu 112. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A.
C.
.
B. a 57.

.
D.
.
19
19
17
Câu 113. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vơ nghiệm.
C. 1.
D. 2.
Câu 114. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
2a3 3
a3
a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 115. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (II) sai.
sai.

D. Câu (I) sai.

x−2
Câu 116. Tính lim
x→+∞ x + 3
2
B. −3.
C. 2.
D. 1.
A. − .
3
Câu 117. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2

a 5
11a
a2 7
a 2
A.
.
B.
.
C.
.
D.
.
4
16
32
8
Câu 118. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 119. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.

C. .
D. .
2
3
2
Trang 9/10 Mã đề 1


2n − 3
Câu 120. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.

C. +∞.

Câu 121. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
Câu 122. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một
quyển sách cùng một môn nằm cạnh nhau là
9
1
2

B.
.
C.
.
A. .
5
10
10
2−n
Câu 123. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.

D. 1.
D. V = 3S h.
kệ dài. Tính xác suất để hai
D.

1
.
5

D. 2.

Câu 124. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).

B. (2; 4; 6).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 125. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
C. |z| = 17.
D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
Câu 126. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
6
. Tính
Câu 127. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. 2.

B. −1.

C. 6.

D. 4.


8
Câu 128. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.
log(mx)
Câu 129. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 130. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. (1; 2).

D. [1; 2].

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

D

1.
3.

2. A

B

4. A

5. A
7.

D

B

8.

B

10.

9. A
11.

6.

B


D

12.

B

13. A

14.

B

15. A

16.

B

18.

B

17.

B

19.

C


20. A

21.

D

22. A

23.

D

24.

25.

D

26.

27.

B

28.

29.

B


30.

31.
33.

B

B
C
D
C

34.
36.

D

35.
C

D

38.

39. A
41.

D


32.

D

37.

C

C

40. A
B

42.

43.

D

B

44.

45.

C

46.

47.


C

48.

C
B
C

49.

B

50. A

51.

B

52.

C

53.

B

54.

C


55.
57.

56.

C
B

59.

58.

C

60.

D

61. A

62.

63.

D

D

D

B

64.

65.

B

66.

67.

B

68.
1

D
C
B


69. A

70.

71. A

72.


73.

B
D
C

78.

79.

C

80.

81.

B

82.

83.

B

84.
D

85.

88.


89.

D

90. A

91.

D

92.

B

96.
C

B
C
B
B
B

100.

D
D

102.


103.

C

104. A

B

C
D

C

C

106.
C

109. A

110. A

111.

C

113.

C


112.
114. A

115.

116.

D

117.

118.

D

119.

120. A

D
B
D
B

121.

122.

B


123. A

124.

B

125.

126.

B

127.

128.
130.

D

98.

101.

107.

C

94.


C

99. A

105.

D

86.

87. A

97.

C

76. A

77.

95.

D

74.

75.

93.


C

C

129.

B

2

C
B
D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×