Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 3 (423)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.19 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 √
− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.

D. |z| =


10.

Câu 2. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
B. 5.
C.
A. 34.
.


D. 68.
17
Câu 3. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 4. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 5. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C. 2a 2.
D.
.
4

2
Câu 6. Tính lim
x→1

A. 3.

x3 − 1
x−1

B. −∞.

D. +∞.

C. 0.

Câu 7. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = ln 10.

C. f 0 (0) = 1.

D. f 0 (0) =

1
.
ln 10

Câu 8. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
Z 1
Câu 9. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.

B.

1
.
2

C.


Câu 10. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4


1−x2

1
.
4

D. 1.


− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 11.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 12. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
Trang 1/10 Mã đề 1


Câu 13. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có một.
D. Có hai.
Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.

B. m ≥ 3.
C. m < 3.
D. m > 3.
4x + 1
bằng?
Câu 15. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −4.
C. 4.
D. −1.
Câu 16. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 17. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
!
5 − 12x
Câu 18. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.

C. 1.
D. Vơ nghiệm.
Câu 19. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 7
a2 5
a 2
.
B.
.
C.
.
D.
.
A.
4
32
8
16
x2 − 9
Câu 20. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. 6.

D. −3.
Câu 21. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.
Câu 22. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R.

x2 +x−2

D. Thập nhị diện đều.


C. D = R \ {1; 2}.

Câu 23. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.
Câu 24. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. 1.
C. .
2
Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.

vn

D. D = (−2; 1).
D. m > −1.

D.

ln 2
.
2

!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 26. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.

D. 1587 m.
Trang 2/10 Mã đề 1


Câu 27. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 3.

Câu 28. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).

D. 4.
D. (0; −2).

Câu 29. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
.

B.
.
C. − .
D.
.
A. −
100
25
16
100
Câu 30. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 31. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

Câu 32. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.

Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
8
24
48
24
Câu 34. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].
D. (1; 2).
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√


a3 5
a3 5
a3 5
a3 3
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 36. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 2.
C. 1.
D. 5.
1
Câu 37. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.

D. m = 4.
1 + 2 + ··· + n
Câu 38. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 39. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. −e.
C. − 2 .
e
e

D. −

1
.
2e
Trang 3/10 Mã đề 1


Câu 40. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.

B. 3.
C. 0.
Câu 41. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
n
(n + 1)2
5n − 3n2

C. un =

1 − 2n
.
5n + n2

D. 1.
D. un =

n2 − 3n
.
n2

Câu 42.
bằng 1 là:

√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
A.
.
B. .
C.
.
D.
.
2
4
4
12
Câu 43. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.

Câu 44. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Câu 45. Khối đa diện loại {4; 3} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 46. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 5.
C. 2.
D. 3.
Câu 47. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 48. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.

B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
2x + 1
x→+∞ x + 1
B. 2.

Câu 49. Tính giới hạn lim

1
.
2
Câu 50. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
x
9
Câu 51. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. .
D. 2.
2
A. 1.


C. −1.

Câu 52. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. .
2

D.

1
D. − .
2

Câu 53. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
4
4
x+1
Câu 54. Tính lim
bằng
x→+∞ 4x + 3

1
1
A. .
B. 3.
C. 1.
D. .
3
4
Trang 4/10 Mã đề 1


Câu 55. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 56. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
1

bằng
Câu 57. [1] Giá trị của biểu thức log √3
10
1
1
B. .
A. − .
3
3
2n − 3
Câu 58. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 1.

C. −3.

D. 3.

C. 0.

D. −∞.

Câu 59. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.
C. 20.
D. 12.
x

x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 60. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
q
Câu 61. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
d = 120◦ .
Câu 62. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.

C. 3a.
D.
.
2
Câu 63. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

A. 2 < m ≤ 3.

B. 0 < m ≤ 1.

1

= m − 2 có nghiệm
3|x−2|
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.

Câu 64. [3-12214d] Với giá trị nào của m thì phương trình

Câu 65. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3

a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2
Trang 5/10 Mã đề 1


Câu 66. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. −2 + 2 ln 2.

D. 4 − 2 ln 2.


Câu 68.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
.
B.
.
A.
3
3

!n
5
D. − .
3

!n
4
C.
.
e

Câu 69. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
Câu 70. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một

nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 71. Hàm số nào sau đây khơng có cực trị
x−2
1
B. y = x3 − 3x.
C. y =
.
D. y = x4 − 2x + 1.
A. y = x + .
x
2x + 1
Câu 72. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 21.
D. 23.
Câu 73. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 30.

D. 8.


[ = 60◦ , S O
Câu 74. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
Câu 75. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 1.
D. 2.
x
Câu 76. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3

1
A. .
B.
.
C. 1.
D. .
2
2
2
!
3n + 2
Câu 77. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.

Câu 78. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
Trang 6/10 Mã đề 1


Câu 79. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 80. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.

D. x = −2.

Câu 81. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 82. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.

C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 83. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 84. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
n3 − 3n
A. un =
.

B. un =
.
C. un = n2 − 4n.
D. un =
.
3
5
n+1
Câu 85. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc

√ với đáy và S C = a 3.3 √
a3 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9
12

Câu 86. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
20
10
40
C50
C50
C50
C50
.(3)30
.(3)40
.(3)10
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
x−2 x−1
x

x+1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 87. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 88. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
5a3 3
2a3 3
4a3 3
A.
.
B.
.
C.

.
D.
.
2
3
3
3
Câu 89. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 7/10 Mã đề 1


Câu 90. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 91. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 92. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.

B. 2.
C. 1.

D. Vô nghiệm.

Câu 93. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
a
2a
.
B.
.
C. .

D. .
A.
3
3
4
3

d = 30 , biết S BC là tam giác đều
Câu 96. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
9
16
Câu 95. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =


Câu 97. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 98. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 99. Tính lim
x→2

A. 1.

x+2
bằng?
x
B. 2.

C. 0.

D. 3.

Câu 100. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.

C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
4a 3
8a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Trang 8/10 Mã đề 1



Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
B.
A. a3 3.
.
C.
.
D.
.
2
4
2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 103. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng

A. 6.
B. 2 3.
C. 2 2.
D. 2.
Câu 104. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Câu 105. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 2.
C. 3.
D. 1.
Câu 106. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 107. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
A.

.
B.
.
C. a3 .
D.
.
6
2
3



x = 1 + 3t




Câu 108. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .

















z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 109. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
B.
=
=

.
A.
2
3
4
2
2
2
x y z−1
x y−2 z−3
C. = =
.
D. =
=
.
1 1
1
2
3
−1
Câu 110. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 6.
C. 10.
D. 4.

Câu 111. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 4.

D. 6.
x−3
Câu 112. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 114. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.

B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Trang 9/10 Mã đề 1


Câu 115. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.

C. 6.

Câu 116. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
B. +∞.

A. −∞.

C. 1.

D. 12.
un
bằng
vn
D. 0.

Câu 117. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.

C. 0, 6%.
D. 0, 7%.
Câu 118. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 119. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. −7, 2.

D. 0, 8.

Câu 120. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 1.

C. 0.
!4x

2
3
Câu 121. Tập các số x thỏa mãn


2
#
" 3 !
2
2
B.
; +∞ .
A. −∞; .
3
5

D. +∞.

!2−x

#
2
C. −∞; .
5

"

!
2
D. − ; +∞ .
3

Câu 122. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.

B. Khơng có.
C. Có một.
D. Có hai.
Câu 123. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
2

Câu 124. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 3.

D. 5.

Câu 125. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + 3.
D. T = e + .
e
e
1
Câu 126. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3

nhất?
A. 2.
B. 1.
C. 4.
D. 3.
cos n + sin n
Câu 127. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 128. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 129. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1637
1079

A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Trang 10/10 Mã đề 1


2mx + 1
1
Câu 130. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
C

3.
5.

4. A
D

6. A

7.

B

8.

9.

B

10.

D
C


12.

11. A
13.

C

2.

14.

B

D
B

15.

C

16.

C

17.

C

18.


C

19.

C

20.

C

21.

D

22.

23.

D

24. A

25. A

26. A
28.

C


27.
29. A

30.
C

31.
33.

B

C

34.

B
B

35.

C

36.

37.

C

38. A
D


41.

B

32.

B

39.

D

C

43. A

40.

C

42.

C

44. A

45.

46.


C

C

47.

B

48.

B

49.

B

50.

B

51.

B

52. A

53.

D


54.

55.

D

56.

57. A

B

58.

59.

D

60.

C
B

62.

61. A
63.

D


64. A

C

65. A
67.

D

B
1

66.

B

68.

B


69.

C

70.

B


71.

C

72.

B

73.

B

75.
77.

D

74.

C

76.

C

78.

B

79. A


B

80.
D

81.

82.

C

83.

C
B

84. A

85.

D

86. A

87.

D

88. A


89.

D

90. A

91.

D

92.

C

93. A

94.

C

95. A

96.

B

98.

B


97.

D

D

99.

B

100.

101.

B

102.

B

103.

B

104.

B

105.


B

106.

B

107.

B

108.

109.

C

110.

111.

C

112.

113. A

114.

115. A


116.
D

117.
119.

C

122.

123.

D

124. A

129.

D
B
D

120.
D

C

127.


B

118. A

121.
125.

C

126.
D

C
D
B

128. A
130.

C

2

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×