Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg 3 (424)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.06 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 2. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.


8
4
12
4
Câu 3. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+1
c+2
c+3

D.

3b + 2ac
.
c+2

Câu 4. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD
√là
3

3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .
3
9
3
Câu 5. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 6. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.


Câu 7. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 5.

D. 6.

Câu 8.
Z [1233d-2] Mệnh đề
Z nào sau đâyZsai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z

D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 9.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 5.
B. 2.
C. 1.
D. 3.
Câu 10. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.

C. 5.

D. 3.

Câu 11. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
A. a 3.

B.
.
C.
.
D.
.
2
2
3
Câu 12. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.

D. m > 1.
Trang 1/10 Mã đề 1


1
Câu 13. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
Câu 14. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.


C. 20.

5
Câu 15. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
A. 5.
B. 5.
C. .
5

D. 30.

log √a

D. 25.

Câu 16. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.
Z 3
x
a
a
Câu 17. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 16.
D. P = 28.
Câu 18. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 19. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
.
B.
.
A.
n
n
Câu 20. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 4.

C.

1

.
n

C. 144.

1
D. √ .
n
D. 24.

[ = 60◦ , S A ⊥ (ABCD).
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3

a 2
a 2
a3 3
3
B.
.
C.
.
D.
.
A. a 3.

12
4
6
Câu 22. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 23. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {2}.
C. {3}.
D. {5; 2}.
Câu 24. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
6
24

x−1 y z+1
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.
Trang 2/10 Mã đề 1


Câu 26. Tính lim

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.

2
7
.
D. - .
3
3
Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
log(mx)
Câu 28. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
A. 0.

C.

0 0 0 0
0
Câu 29.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.

.
C.
.
D.
.
A.
2
7
2
3
Câu 30. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

C. 9.
D. 7.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 31. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 32. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?

A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. 1.
C. −2 + 2 ln 2.

D. e.

Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
1

Câu 35. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).

C. D = R \ {1}.

D. D = (−∞; 1).

[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
17
19
19
12 + 22 + · · · + n2
Câu 37. [3-1133d] Tính lim
n3
2
1
A. +∞.

B. .
C. .
D. 0.
3
3
Câu 38. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Có vơ số.
D. Khơng có.
Câu 39. Hàm số y =
A. x = 3.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 2.

D. x = 1.
Trang 3/10 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 40. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
.
B.
.
C. 2a 2.
D.
.
A.
24
12
24
q
2
Câu 41. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .

C. 48cm3 .
D. 64cm3 .
Câu 43. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

C. D = R.
D. D = (0; +∞).
1
Câu 44. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
!
1
1
1
Câu 45. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 2.
D. 1.
2

x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 46. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. [2; +∞).
Câu 47. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
x−1
Câu 48. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét

x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (I) sai.
D. Câu (III) sai.
sai.
2x + 1
Câu 50. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. 1.
D. −1.
2
Câu 51. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (0; 1).
Trang 4/10 Mã đề 1



Câu 52. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C. −∞; − .
A. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2
! x3 −3mx2 +m
1
Câu 53. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).

Câu 54. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 55. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (II).


Câu 56. [2] Tổng các nghiệm của phương trình 3
A. 8.
B. 7.
2−n
bằng
Câu 57. Giá trị của giới hạn lim
n+1
A. 0.
B. 1.

C. (I) và (III).

D. Cả ba mệnh đề.

x2 −3x+8

= 92x−1 là
C. 6.

D. 5.

C. −1.

D. 2.

Câu 58. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.

D. 4 mặt.
Câu 59. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 60. Tính lim

x→+∞

A. 1.

x−2
x+3

2
B. − .
3

C. 2.

D. −3.

Câu 61. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Trang 5/10 Mã đề 1



Câu 62. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.

1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).

B. lim

Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 2
a3 3
a 6
.
B.
.
C.

.
D.
.
A.
48
48
16
24
1
Câu 64. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. −2.
C. −1.
D. 2.
Câu 65. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.

D. 1.

2
Câu 66. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 3.
D. m = ±1.
A. m = ±3.
B. m = ± 2.


Câu 67. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 68. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3

C. 30.

D. 12.

Câu 69. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 70. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?

A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
Câu 72. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 4.

D. (−∞; 6, 5).
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 73.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3

3
3
A.
.
B. .
C.
.
D.
.
4
4
2
12
1
Câu 74. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; 3).
D. (1; +∞).
Câu 75. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .
D. T = 4 + .
e
e
Câu 76. Khối đa diện loại {3; 5} có tên gọi là gì?

A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Trang 6/10 Mã đề 1


4

Câu 77. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
2
7
A. a 3 .
B. a 3 .
C. a 3 .
Câu 78.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

√3

a2 bằng
5

D. a 8 .


Z

Z

2
.
3

D. 0.

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).

Câu 79. Tính lim

2n2 − 1
3n6 + n4

A. 1.

B. 2.


Câu 80. [2] Phương trình log x 4 log2
A. 3.

B. 2.

C.

f (u)dx = F(u) +C.

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. Vô nghiệm.
D. 1.

Câu 81. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Khơng tồn tại.

D. 13.

Câu 82. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (2; 4; 3).
D. (1; 3; 2).
x+3

Câu 83. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 84. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.



x = 1 + 3t




Câu 85. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương

 trình là











x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t

















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t

















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 86. Tính giới hạn lim
A. 0.

C. 1.

D. 5.

Câu 87. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
8a
2a

A.
.
B. .
C.
.
D.
.
9
9
9
9
1
Câu 88. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Trang 7/10 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
2a

a
a
a 2
.
B.
.
C. .
D. .
A.
3
3
4
3
Câu 90. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của


√mặt phẳng (AIC) có diện tích
√ hình chóp S .ABCD với
2
2
2
2
a 5
a 7
a 2
11a
A.

.
B.
.
C.
.
D.
.
16
8
4
32
Câu 91. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 89. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 92. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
2
2

3
3
2
Câu 93. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
.
C. −2.
D. −7.
A. −4.
B.
27
Câu 94. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
log7 16
bằng
Câu 95. [1-c] Giá trị của biểu thức
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.
D. 4.
Câu 96. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. (−∞; −3].
B. [1; +∞).
C. [−1; 3].
D. [−3; 1].
Câu 97. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
n
n
n2
5n + n2
5n − 3n2
log2 240 log2 15
Câu 98. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.

C. 1.
Câu 99. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.

D. un =

n2 + n + 1
.
(n + 1)2

D. −8.
D. 7 mặt.

Câu 100. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. 9.
C. .
D. .
2
2
0 0 0
Câu 101. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
2

2

Trang 8/10 Mã đề 1


Câu 102. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.

D.
 π
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
e .
C. e .
D.
A. 1.
B.
2
2
Câu 104. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối
nhau?
A. 4.
B. 3.
C. 6.
D.

{3; 3}.

2 π4
e .
2
tứ diện có thể tích bằng
8.

Câu 105. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.

Câu 106. Dãy số nào có giới hạn bằng 0?
!n
−2
n3 − 3n
.
B. un =
.
A. un =
n+1
3
cos n + sin n
Câu 107. Tính lim
n2 + 1
A. 1.
B. 0.

C. un = n − 4n.

!n
6
D. un =
.
5

C. −∞.

D. +∞.

2


Câu 108. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −12.
C. −5.
D. −15.
Câu 109. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 110. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 111. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
2


Câu 112. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log2 3.
x+2
bằng?
Câu 113. Tính lim
x→2
x
A. 2.
B. 3.
C. 1.

D. 1 − log3 2.

D. 0.

−2x2

Câu 114. [2-c] Giá trị lớn nhất của hàm số y = xe
1
2
B. 3 .
A. √ .
e
2 e

trên đoạn [1; 2] là
1
C. 2 .

e

Câu 115. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 116.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
4
A.
.
B.
.
3
e

!n
5
C.
.
3

D.


1
.
2e3

!n
5
D. − .
3
Trang 9/10 Mã đề 1


x2 − 9
Câu 117. Tính lim
x→3 x − 3
A. 6.
B. 3.

C. +∞.
0

0

0

D. −3.

0

Câu 118. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
6
18
Câu 119. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 120. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 121. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
Câu 122. [1] Đạo hàm của hàm số y = 2 x là

1
1
A. y0 = x
.
B. y0 =
.
2 . ln x
ln 2
Câu 123. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 1.

C. y0 = 2 x . ln 2.

D. Vô nghiệm.
D. y0 = 2 x . ln x.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 0.

Câu 124. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 125. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 18.
C. 27.
D.
2
tan x + m
Câu 126. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. (−∞; −1) ∪ (1; +∞). D. [0; +∞).
2

2

Câu 127. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x√lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Câu 128.

Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
Z
Z mệnh đề sau, mệnhZđề nào sai? Z
A.
Z
C.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

( f (x) + g(x))dx =

B.
Z

( f (x) − g(x))dx =

D.

Câu 129. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).

f (x)dx +

Z


g(x)dx.
Z

f (x)dx −

g(x)dx.

D. [1; 2].

2

Câu 130. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.

ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 32.

D. S = 24.
Trang 10/10 Mã đề 1


- - - - - - - - - - HẾT- - - - - - - - - -


Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2. A
B

5.

4. A
D

7.
9.

6.

C

D

8.

C


10. A

B

11.

D

12.

13.

D

14.

15.

D

16.

B
C
B

17. A

18.


C

19. A

20.

C

C

21.

22. A

23. A

24. A

25.

C

26.

27.

C

28. A


29.
31.

D

32.
D

34.

C

39.

38.
D

B

D

42.

43.

C

44. A
D


B
D

C

45.

C

40.

41.

47.

D

36.

B

37.

C

30.

B


33.
35.

D

46.

B

D

48. A

49. A

50. A

51. A

52. A

53. A

54.

B

56.

B


55.

B

57.

C

58. A

59.

C

60. A

61.

B

62.

63.

B

64.

65.


B

66.

67.

B

68.
1

C
B
D
C


69.

70.

B

71. A

72.

73. A


74. A

75. A

76.

77.

78.

B

79.
81.

B

82.

83.

B

84.

85. A
89.

C
B

D

91.
93.

C
B

99. A
101.

C
B
D
B
C

86.

B

88.

B

90.

B

92. A


95. A
97.

D

80.

D

87.

C

B

94.

D

96.

D

98.

D

100.


C

102.

C

103.

D

104.

B

105.

D

106.

B
B

107.

B

108.

109.


B

110. A

111.

D

112. A

113. A

114.

115.

C

116. A

117. A

119. A

120. A

121.

122.

126.

D
B

128. A
130.

B

123. A

C

124.

C

C

2

125.

B

127.

B


129.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×